
This is a pre- or post-print of an article published in
Hernandez-Vargas, Esteban A.; Alanis, Alma Y.; Sanchez, 
Edgar N. Discrete-time Neural Observer for HIV infection 

dynamics (2012)
 World Automation Congress (WAC) article no. 6320891, 

pp.1,6.



 

 

 

 

 

 

Abstract— This paper presents a discrete-time neural observer 

for nonlinear systems, whose mathematical model is assumed to be 

unknown. The observer is based on a recurrent high order neural 

network (RHONN), which is trained on-line with an extended 

Kalman filter (EKF)-based algorithm. The respective stability 

analysis based on the Lyapunov approach is included. The neural 

observer is tested by application to an immunological interaction 

model for HIV. The observer estimates the non-measured number 

of infected CD4+T cells in the blood torrent, the measured number 

of non-infected CD4+T cells and the measured concentration of 

viral load. The observer performance is illustrated via simulations. 

I. INTRODUCTION 

HIV can lead to acquired immunodeficiency syndrome 

(AIDS). This syndrome is able to collapse the immune 

system; for which has currently no known cure. The first 

reports of homosexual patients suffering from previously 

rare diseases such as pneumocystis pneumonia and Kaposis 

sarcoma were published in May 1981 [1]. HIV was defined 

as the primary cause of the acquired immunodeficiency 

syndrome [2]. It is estimated that in 2005, 40.3 million 

people were living with HIV/AIDS, 4.1 million people were 

infected with the virus, and 3.9 million people died due to 

progression to AIDS. 

    HIV is a retrovirus which uses CD4+T cells, fundamental 

part of the immune system, for replication. After this 

important discovery, researchers have focused on seeking 

treatment protocols with the knowledge of the infection 

cycle.  The development of antiretroviral has been one of the 

most active areas in HIV research.   

However, interactions of HIV in the body are very 

complex, for this reason several researches have been 

tackled the problem using a mathematical approach [3], [4], 

[5]. Several models have come to play an important part in 

HIV infection; some of them are deterministic models based 

on differential equations [6] while other introduces 

stochastic models [4]. The main problem to implement 

control strategies or further information for clinical protocols 

is that the complete information of the infection dynamic 

should be known. Due to these facts, state estimation applied 

to HIV has received special attention by many authors, who 

have obtained interesting results [7], [8]. These approaches 

mentioned above require knowing at least partially the 

model. Neural observers [9], [10], [11], have been provided 
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interesting results without the requirement of the model.  

Based model and neural observers proposed for HIV [10] 

have the problem of being in continuous time, which is a 

drawback for implementation. 

    This paper presents a discrete-time recurrent high order 

neural Luenberger-like observer [13]. This observer is based 

on a RHONN [11], which estimates the state vector of the 

unknown model dynamics. The learning algorithm for the 

RHONN is based on an extended Kalman filter (EKF). 

Moreover, this paper also includes the respective stability 

analysis, on the basis of the Lyapunov approach, for the 

neural observer trained with the EKF. Applicability of the 

scheme is illustrated via simulations to the HIV dynamics. 

II. PRELIMINARIES 

Through this paper, we use k as the step sampling, k   0 

∪ Z
+
, |•| as the absolute value and, ∥•∥ as the Euclidian norm 

for vectors and as any adequate norm for matrices. Consider 

a MIMO nonlinear system 

 

( 1) ( ( ), ( ))ix k F x k u k                      (1) 

 

where x   R 
n
, u   R

 m 
and F   R

 n
×R

 m 
→ R

 n 
is a 

nonlinear function. 

 

 Definition 1. The solution of (1) is semiglobally uniformly 

ultimately bounded (SGUUB), if for any Ω, a compact 

subset of R 
n
 and all x(k)   Ω, there exists an ε > 0 and a 

number N(ε , x(k0)) such that ∥x(k)∥ < ε for all k ≥ k0+N. In 

other words, the solution of (1) is said to be SGUUB if, for 

any a priory given (arbitrarily large) bounded set Ω and any 

a priory given (arbitrarily small) set Ω0, which contains (0, 

0) as an interior point, there exists an input u, such that every 

trajectory of the closed loop system starting from Ω enters 

the set Ω0 = {x (k) | ∥x(k)∥ < ε }, in a finite time and remains 

in it thereafter. 

III. DISCRETE-TIME RECURRENT HIGH ORDER NEURAL 

NETWORK 

    A discrete-time recurrent high order neural network 

(RHONN) can be presented as: 

 

( 1) ( ( ), ( )),  1,...,T

i i ix k w z x k u k i n            (2) 

 

where xi (i = 1,2,…,n) is the state of the ith neuron, Li is the 

respective number of higher-order connections, n is the state 

dimension, {I1, I2,…, ILi} is a collection of non-ordered 

subsets of {1,2,…,n}, wi (i = 1,2,…,n) is the respective on-

line adapted weight vector, and zi(x(k),u(k)) is given by 
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dji(k) being nonnegative integers and yi is defined as follows: 
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                      (4) 

 

where u = [u1,u2,...,um]
T
 is the input vector to the neural 

network (NN), and S(●) is defined by 

 

1
( )

1 exp( )
S x

x
 

 
                     (5) 

 

    We consider now the problem to approximate the 

nonlinear system (1), by the following discrete-time 

RHONN series-parallel representation:  

 
*( 1) ( ( ), ( )) ,  1,...,

i

T

i i i zk w z x k u k i n            (6) 

 

where 𝒳i is the ith plant state, ϵz is a bounded approximation 

error, which can be reduced by increasing the number of 

adjustable weights [10]. Assume that there exists the ideal 

weight vector wi
*
,
 
such that ∥ϵz∥ can be minimized on a 

compact set ΩZi ⊂ ℜLi. In general, it is assumed that this 

vector exists and is constant but unknown, see [11] for the 

details. Let us define its estimate as wi and the estimation 

error as 

 
*ˆ ( ) ( )i i iw k w w k                           (7) 

 

Theorem 1. The RHONN (2) trained with the EKF 

algorithm to identify the nonlinear system (1), ensures that 

the identification error is semiglobally uniformly ultimately 

bounded (SGUUB); moreover, the RHONN weights remain 

bounded. For the proof, see [12]. 

 

A. The EKF Training algorithm 

    For KF-based neural network training, the network 

weights become the states to be estimated. In this case, the 

error between the neural network output and the measured 

plant output can be considered as additive white noise. Due 

to the fact that the neural network mapping is nonlinear, an 

EKF-type is required [13]. The training goal is to find the 

optimal weight values which minimize the prediction error 

[11], [12]. In this work, we use an EKF-based training 

algorithm described by 

 

( 1) ( ) ( ) ( )

     ( ) ( ) ( ) ( )       1,...,

( 1) ( ) ( ) ( ) ( ) ( )

i i i i i

i i i i

T

i i i i i i

w k w k K k e k

K k P k H k M k i n

P k P k K k H k P k Q k

  

 

   

         (8) 

 

with 

 
1( ) [ ( ) ( ) ( ) ( )]

ˆ  ( ) ( ) ( )

T

i i i i i

i

M k R k H k P k H k

e k y k y k

 

 
             (9) 

 

where e(k) ∈ ℜp
 is the observation error. Pi(k) ∈ ℜLi×Li is the 

weight estimation error covariance matrix at step k, wi ∈ ℜLi 

is the weight (state) vector, Li is the respective number 

neural network weights, y ∈ ℜp
 is the plant output, y  ∈ ℜp

 

is the NN output, n is the number of states, Ki ∈ ℜ Li ×p  
is the 

Kalman gain matrix, Qi ∈ ℜLi×Li is the NN weight estimation 

noise covariance matrix and Ri ∈ ℜp×p 
is the error noise 

covariance. Hi ∈ ℜLi×p 
is a matrix, in which each entry (Hij) is 

the derivative of the  i-th neural output with respect to ij-th 

NN weight, (wij), given as follows: 

 

ˆ( )
( )

( )

T

ij

ij

y k
H k

w k

 
  

  

                            (10) 

 

where i=1,…,n and j=1,…,Li. Usually Pi and Qi are 

initialized as diagonal matrices, with entries Pi(0) and Qi(0), 

respectively. It is important to remark that Hi(k), Ki(k) and 

Pi(k) for the EKF are bounded; for a detailed explanation of 

this fact see [13]. To obtain H in (10) is not trivial. In this 

case ˆ( ) ( )iy k x k , so by the chain rule we have  

 

ˆ ˆ( ) ( ) ( )

( ) ( ) ( )

i

ij i ij

y k y k x k

w k x k w k

  


  
                  (11) 

                 

IV. DISCRETE-TIME NEURAL OBSERVER 

In this section, we introduce the neural observer proposed in 

[13]. We consider the state of a discrete-time nonlinear 

system, which is assumed to be observable, given by 

 

( 1) ( ( ), ( )) ( )

     ( ) ( )

x k F x k u k d k

y k Cx k

  


             (12) 

 

where x  R
 n 

is the state vector of the system, u   R
 m

 is the 

input vector, y(k)   R
 p

 is the output vector, C   R
 p×n

 is a 

known output matrix, d(k)   R
 n

 is a disturbance vector and 

F(●) is a smooth vector field and Fi(●) its entries; hence (12) 

can be rewritten as: 
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 (13) 

 

For the system (13), a Luenberger neural observer 

(RHONO) is proposed with the following structure: 

 

1
ˆ ˆ ˆ ˆ       ( ) [ ( )... ( )... ( )]

ˆ ˆ  ( 1) ( ( ), ( )) ( )

ˆ ˆ        y( ) ( ),          1,...,

T

i n

T

i i i i

x k x k x k x k

x k w z x k u k g e k

k Cx k i n



  

 

        (14) 

 

with Li   R
 p

, wi and zi as in (3). The weight vectors are 

updated on-line with a decoupled EKF (8)-(9). The output 

error is defined by 

 

ˆ( ) ( ) ( )e k y k y k                           (15) 

 

and the state estimation error as 

 

ˆ( ) ( ) ( )x k x k x k                           (16) 

 

    Hence the dynamic of (16) can be expressed as 

 

*

'

*
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           (17) 

 

where ˆ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))i i iz x k u k z x k u k z x k u k   and 

' ( )
i iz z id k   . 

 

The stability properties of the observer are stated in the 

following theorem: 

 

    Theorem 2: For the system (1) the RHONO (2), trained 

with the EKF-based algorithm, ensures that the estimation 

error (16) and the output error (15) are semiglobally 

uniformly ultimately bounded. Moreover, the RHONO 

weights remain bounded.  For proof see Appendix A. 

 

Considering (15) and (17) 

 

                ( ) ( )e k Cx k                              (18) 

     

     

Then the system (17) can be rewritten as 

 
'

*

ˆ( 1) ( ( ), ( )) ( )

               ( ( ), ( ))

ii i z i

T

i i

x k w z x k u k g Cx k

w z x k u k

   



            (19) 

 

On the other hand the dynamics of (8) is 

 
*( 1) ( 1) ( ) ( ) ( )i i i i i iw k w w k w k K k e k              (20)     

V. OBSERVER DESIGN 

In order to obtain the dynamics of HIV infection we 

consider the model proposed by [3], which includes the 

concentration of infected cells (T
i
), non-infected (T) as well 

as the viral load in the blood torrent (V). The model is 

presented as follows: 

 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( ), ( ), ( )

T v

i i
i i

v T

i

T v

i

dT t T t V t
s t T t r z t k T t V t

dt C V t
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z t k T t V t T t r

dt C V t

dV t T t V t V t
Nr k T t V t g

dt C V t b V t

y t h T t T t V t





   


  


  
 

   

 (21) 

 

s(t) is the source of new CD4+T cells produced by the 

Thymus. 
T  is the speed of death toll of the not infected 

CD4+T cells. i

T  is the death rate of  infected cells.  kv is the 

infection rate. kT is the speed of lymphocytes CD8 

eliminating the virus. r is the maximum proliferation of the 

CD4+T cells population. N is the number of free virus 

produced by the infected cells. C is the semi-constant of the 

proliferation process. z is the total daily drug dosage in 

chemotherapy. b is the half-constant saturation value of an 

external source of virus. gv is the level under which other 

cells (that are not lymphocytes) produce free virus. 

Parameters values can be found in [3]. The output matrix is 

given by  1 0 1
T

h  . 

    The neural observer is applied to HIV model (21), whose 

nonlinear dynamics are considered unknown (black-box). 

We use a sampling time of 7 hours to estimate the 

concentration of infected cells with the on-line concentration 

of viral cells in the blood torrent as well as non-infected 

measurements. The neural network used for this state 

estimation is given by 
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where 
1

x̂ , 
2

x̂  and 
3

x̂  are the concentration of non-infected 

cells, infected cells and the total viral load in the blood 

torrent, respectively. The input u1 is the  daily drug dosage in 

chemotherapy. The observer scheme is presented in Fig.1. 



 

 

 

 

 

 

 
Fig. 1 - Observation Scheme 

 

    The training is performed on-line, using a parallel 

configuration. All the NN states are initialized randomly. 

The covariance matrices are initialized as diagonal, with 

nonzero elements as: Pi(0) = 100000,  Qi(0) = 1000 and Ri(0) 

= 1000, (i=1,2,3), respectively; the Luenberger parameter 

vector is   0.2 0.01 0.0001
T

g  . 

VI. SIMULATION RESULTS 

The observer simulations are implemented using 

Matlab/Simulink
TM

. As can be seen in Fig.3, the RHONO 

exhibits good performance for the three variables. Because 

the fast convergence to the model it is not easy to observe 

the estimation transient, therefore we show in Fig.2 the error 

evolution which confirms the good estimation made by the 

neural observer. Notice that the estimation for the three 

states is achieved before the second day, while other works 

have convergence time around 15 days [9]. Fast-

convergence time and discrete-time observers are important 

in order to realize good medication protocols [3]. For 

instance, the principal marker for treatment in HIV is the 

viral load, which provides the insight how the infection is 

progressing. However, clinicians could use other markers for 

the scheduling of antiretrovirals. The estimation of other 

important cells as macrophages [6] should be considered for 

future directions to the estimation problem in HIV. 

 

 
Fig. 2- Estimation errors evolution 

 

(a) 

 
(b) 

 
(c) 

 
Fig. 3- HIV dynamics (model signal in solid line and neural 

signal in dashed line) 

 

VII. CONCLUSIONS 

    In this paper we showed a discrete-time neural observer 

trained on-line with the Kalman filter, its respective stability 

analysis is presented. The estimation of the number of 

CD4+T cells and viral load in the blood torrent in HIV has 

been implemented. The RHONO considers on-line 

measurements of non-infected cells and viral load in blood. 

Simulations results illustrate the effectiveness of the 

discrete-time observer and fast-convergence time. This 

observer scheme provides promising guidelines to design 

effective medication protocols. 
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APPENDIX A 

 

Proof of Theorem 2: 

 

    Consider the Lyapunov function candidate 
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 Using (18), (19) and (22) we obtain the following 

expression: 
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with   ( ) ( ) ( ) ( )T

i i i iA k K k H k P k Q k  , then (22) can be 

written as 
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finally (23), can be expressed as 
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iw and 
izL is the Lipchitz 

constant of ( ( ), ( ))iz x k u k , as defined in (3). Then, there is 
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    Therefore the solution of (2) and (20) is stable. Moreover 

the estimation error and the RHONO weights are SGUUB 

[11]. Considering (15) it is easy to see that the output error 

has an algebraic relation with  x k  for that reason if  x k  is 

bounded, e(k) is bounded as well. 
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