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"Insight Box": 1 

INSIGHT: We present an upgraded bioreaction database useful for the reconstruction of metabol-2 

ic networks. Apart from necessary updates due to progress in research and error correction, the 3 

database incorporates structural improvements and revised criterions, such as currency metabo-4 

lites, reversibility information, reactant pairs, non-enzymatic spontaneous reactions, balanced 5 

stoichiometry, and glycans. We combine an automatic approach with manual curation in order to 6 

make the reconstructed metabolic networks more accurate and more reliable. 7 

For evaluating this database, we encountered the problem of finding biologically feasible shortest 8 

paths, which turned out to be hard to compute. 9 

INNOVATION: We present new methods to increase the quality of bioreaction databases. 10 

INTEGRATION: We use methods from computer science to find biologically feasible paths in 11 

reconstructed metabolic networks. 12 

  13 
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ABSTRACT 14 

The bioreaction database established by Ma and Zeng (Bioinformatics 2003. 19, 270-277) for in 15 
silico reconstruction of genome-scale metabolic networks has been widely used. Based on more 16 
recent information in the reference databases KEGG LIGAND and BRENDA, we upgrade the 17 
bioreaction database in this work by almost doubling the number of reactions from 3565 to 18 
6851. Over 70 % of the reactions have been manually updated/revised in terms of reversibility, 19 
reactant pairs, currency metabolites and error correction. For the first time, 41 spontaneous sug-20 
ar mutarotation reactions are introduced into the biochemical database. The upgrade significant-21 
ly improves the reconstruction of genome scale metabolic networks. Many gaps or missing 22 
biochemical links can be recovered, as exemplified with three model organisms Homo sapiens, 23 
Aspergillus niger, and Escherichia coli. The topological parameters of the constructed networks 24 
were also largely affected, however, the overall network structure remains scale-free. 25 
Furthermore, we consider the problem of computing biologically feasible shortest paths in re-26 
constructed metabolic networks. We show that these paths are hard to compute and present 27 
solutions to find such paths in networks of small and medium size. 28 
 29 
Availability:The upgraded version of the bioreaction database and supporting tools and materi-30 
als are available from our website: http://www.tuhh.de/ibb. 31 
 32 
KEYWORDS: Bioreaction database, network reconstruction and analysis, currency metabolite, 33 
metabolic network, reactant pair, shortest path 34 
 35 
Contact: aze@tu-harburg.de, s.fekete@tu-bs.de 36 
 37 

1 INTRODUCTION 38 

Reconstruction of genome-scale metabolic networks has become a powerful tool for biological studies in 39 
recent years (Francke et al., 2005), mainly due to the rapid development of genome sequencing technology 40 
(Margulies et al., 2005). Network-based approaches can help to improve annotation of genome sequence, 41 
to interpret high-throughput omics data, to understand biological processes of pathogenesis or industrial 42 
production at a system level, and to rationally control or design biological systems (Duarte et al., 2004; 43 
Famili et al., 2003; Junker et al., 2006; Klukas et al., 2006; Nacher et al., 2006; Rahman and Schomburg, 44 
2006; Sun et al., 2007). A prerequisite for a reliable reconstruction of metabolic networks is the availabil-45 
ity of a bioreaction database that should cover as much as possible information on biochemical reactions. 46 
Such a database should also allow for unambiguous and biochemically or physiologically meaningful con-47 
nections among the reactant pairs for functional analysis. 48 
There are many bioreaction databases which can be helpful for metabolic reconstruction and analysis, 49 
including the well-known Roche wall chart of Biochemical Pathways (Michal and Schomburg, 2010), the 50 
BioCyc database and its Pathway Tool (Caspi et al., 2010), the Kyoto Encyclopedia of Genes and Genomes 51 
(KEGG) databases including KEGG PATHWAY for maps of biological processes and KEGG LIGAND for 52 

http://www.tuhh.de/ibb
mailto:aze@tu-harburg.de
mailto:s.fekete@tu-bs.de
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chemical compounds, drugs, glycans and reactions (Kanehisa et al., 2010), and the BRaunschweig ENzyme 1 
DAtabase BRENDA (Scheer et al., 2010). It is also possible to combine databases in an integrative manner 2 
for the reconstruction of metabolic networks to increase reliability (Radrich et al., 2010). 3 
However, the results by applying these databases must be carefully evaluated. For example, the path from 4 
glucose to pyruvate via the glycolysis pathway was once calculated as two steps by considering ADP as a 5 
conversion hub (Jeong et al., 2000), which is obviously physiologically not meaningful (Ma and Zeng, 6 
2003 a). 7 
Ma and Zeng (2003 a) developed a bioreaction database based on the KEGG LIGAND database, and 8 
demonstrated its usefulness by reconstruction of high-resolution metabolic networks for over 80 organ-9 
isms. In this database, Ma and Zeng defined the reversibility of the reactions according to literature data 10 
and biochemistry knowledge and introduced the concept of reactant pairs by considering the currency 11 
metabolites. The latter feature was also adopted by recent versions of KEGG LIGAND (Kotera et al., 12 
2004). All these features are important to reconstruct the metabolic network and allow a more proper anal-13 
ysis of network properties such as connectivity, shortest pathway length and modularity. The reaction 14 
database of Ma and Zeng has been widely used by different authors. 15 
On the other hand, since the release of the bioreaction database of Ma and Zeng (2003 a), the KEGG 16 
LIGAND database has been improved significantly. For example, the total number of reactions in the 17 
LIGAND database increased from 3565 (status of Sept 2003, Release 27.0) to 6851 (status of Dec 2006, 18 
Release 40.0), 73 % of reactions were updated in terms of the reaction equations or corresponding en-19 
zymes. Since 2004, KEGG introduced reactant pairs into the LIGAND database as well and categorized 20 
them as five types: main, cofac, trans, ligase, and leave (Kotera et al., 2004). However, there are still 21 
shortcomings in the LIGAND database. For example, the reactant pairs are not comparable to the pairs we 22 
provided by considering the currency metabolites which was demonstrated to be very useful for the analy-23 
sis of the overall network property; the reversibility information of the reactions is still incomplete; many 24 
spontaneous reactions, in particular the mutarotation reactions of sugars which take place under real physi-25 
ological conditions, are missing. Because the diastereomers (α- and β-anomer) are generally distinguished 26 
as different compounds in the LIGAND database, the missing of spontaneous mutarotation reactions be-27 
tween them may lead to the breakage of the natural utilization pathways of these sugars. The aforemen-28 
tioned points (number of reactions, definition of reactant pairs, reversibility) make it necessary for us to 29 
continue to upgrade our bioreaction database accordingly. 30 
 31 
Several parameters can be used for the evaluation of reconstructed metabolic networks based on the data of 32 
the mentioned reaction databases representing different quality standards. One important feature is the 33 
shortest path between two nodes/metabolites in a network. Because this parameter is based on pure graph 34 
theoretical facts, it is in general difficult to use this one to determine biochemically feasible paths. To 35 
compute such feasible paths, the database must fulfill two requirements: 36 

1. The data of the reaction database must show a certain quality, i.e. reasonable reactant pairs by 37 
removing currency metabolites from the reactions. 38 
2. Reversibility information based on experimental data or, if not available, biochemi-39 
cal/thermodynamical rules. 40 

Additionally, a shortest path must meet an important constraint: One edge between two nodes may repre-41 
sent more than one reaction, and therefore more alternative paths are possible. Pathways that use a reaction 42 
type twice are not meaningful. Thus, we are interested in (shortest) paths with distinct reaction types. Note 43 
that classical shortest-path algorithms such as Breadth-first search or Dijkstra’s algorithm are not capable 44 
of finding such paths. Computing biologically feasible shortest paths under these conditions is considera-45 
bly harder. That is, the computation needs much more memory capacity and calculation time. Within this 46 
work we introduce an implementation of a shortest path algorithm that is able to solve this problem. The 47 
benefit of considering these aspects is that the chance for finding biologically feasible shortest paths will 48 
increase significantly. 49 
There are some other approaches to find biologically feasible shortest paths and to avoid irrelevant 50 
shortcuts between metabolites: In their work based on the KEGG RPAIR database, Faust et al. (2009) take 51 
the chemical structure of reactants into account to differentiate between side and main compounds of a 52 
reaction. Croes et al., (2005) use shortest paths in networks where a compound is assigned a weight equal 53 
to its number of incident edges. Finding pathways based on transfers of atoms between chemical com-54 
pounds (atom tracking) was presented by Boyer and Viari (2003) and Heath et al. (2010). McShan et al. 55 
(2003) use heuristic search methods for finding metabolic pathways by reasoning over transformations 56 
using chemical and biological information (PathMiner). Kaleta et al. (2009) compute elementary flux 57 
patterns to detect pathways. Independently from our work, Chakraborty et al. (2009) show that it is NP-58 
hard to find the minimum of labels such that for any two vertices there is a rainbow path, i.e., a path with 59 
pairwise distinct edge labels. 60 
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2 MATERIALS AND METHODS 1 

2.1 Software 2 

The software listed here was used for database upgrade, reconstruction, and analysis of metabolic net-3 
works: 4 
MS Office Excel 2003 and its built-in programming language Visual Basic for Applications (VBA) and 5 
freeware: Cytoscape (Christmas et al., 2005), together with diverse plugins: NetworkAnalyzer Version 1.0 6 
(Albrecht, Assenov and Lengauer, 2006, Max Planck Institute for Informatics), ShortestPath Version 0.3 7 
(Rosa da Silva, 2006). Pajek Version 1.17 (Batagelj and Mrvar, 1998), ncluster (Python script, Rosa da 8 
Silva, 2006) for estimating the network modularity. 9 
Furthermore, we used a shortest path tool by Scheer and Stelzer (Java program, 2008, Department of Bio-10 
informatics and Biochemistry, Technische Universität Braunschweig) and SPUL (Kamphans and Stelzer, 11 
2008). 12 
 13 

2.2 Databases 14 

For the upgrade of the bioreaction database the following databases were used as reference: 15 
KEGG: Kyoto Encyclopedia of Genes and Genomes (Kanehisa et al., 2010), particularly the LIGAND 16 
database (release 44.0) as well as BRENDA: BRaunschweig ENzyme DAtabase (Scheer et al., 2010, release 17 
2007.2). The KEGG database builds the backbone of our biochemical reaction database. Primarily the 18 
BRENDA database was used to get experimental data about the reactions, for example the reversibility 19 
information. 20 

2.3 Database upgrade 21 

Information from the KEGG LIGAND database was extracted into an Excel spreadsheet and compared 22 
with the previous version of our database (Ma and Zeng, 2003 a). The information on reversibility and 23 
reactant pairs for those unchanged reactions were adopted from our previous database. All reactions were 24 
manually processed to keep consistent with the rules defined below. 25 
1. Reactant pairs. The reactions are used as linkage to build connection pairs (reactant pairs). For group 26 
transfer reactions, the transfer of carbon group is considered as a linkage, as suggested by Arita (2003 a,b), 27 
while the transfer of amino-, phospho-, and sulfo- groups are not. For example, the transfer of CoA will 28 
lead to a reactant pair (e.g. R1-CoA – R2-CoA). For methyl group transfer reactions mediated by S-29 
adenosyl-L-methionine (SAM, C00019), SAM and the methyl-acceptor complex is a reactant pair. The 30 
reactant pairs defined in the KEGG LIGAND database can help this process only limitedly, because the 31 
carbon flow criterion and the currency metabolites (see below) were not consistently considered there. The 32 
main-pairs of LIGAND only mean that these pairs are present in the KEGG PATHWAY maps, which is 33 
different from the definition of reactant pairs in this work. 34 
2. Currency metabolites. Currency metabolites (CM) usually refer to metabolites which take part in many 35 
reactions to transfer energy, electrons or certain functional groups (phosphoryl-, amino-, methyl- group, 36 
one carbon unit etc.; Huss and Holme, 2007; Neidhardt et al., 1990). During the transferring process, the 37 
core structure of these metabolites remains unchanged. The function of these metabolites resembles cur-38 
rency (money) in the commercial world, therefore called currency metabolites. The typical examples are 39 
ATP and NADH. Besides the transferring function, most of the inorganic substances, such as H2O, CO2, 40 
O2, Pi etc., involves in a huge number of reactions, and are frequently consumed and regenerated, having 41 
the feature of currency, too. Therefore, they are also treated as CMs. CMs are not used to build reactant 42 
pairs because otherwise the pathways deduced by graph theory from the metabolic network are physiologi-43 
cally meaningless due to the huge number of connections via these currency-like compounds (Ma and 44 
Zeng, 2003 a). 45 
However, CMs cannot be defined per se (Ma and Zeng, 2003 a). For example, ATP is no more CM when 46 
used for adenylylation reactions or mRNA synthesis. So the recognition of CM has to be done manually 47 
for each reaction. The rules developed in the work of Ma and Zeng (2003 a) are generally followed with a 48 
few extensions. In the end, 153 metabolites are regarded as CM in this work (refer to the supplementary 49 
Tab. A1). 50 
 51 
Here are some examples: 52 
 53 
1) biuret + H2O = urea-1-carboxylate + NH3 54 

 One reactant pair was derived, ammonium was recognized as CM. 55 
2) (S)-3-hydroxyisobutyryl-CoA + H2O = (S)-3-hydroxyisobutyrate + CoA 56 

 Two reactant pairs, CoA is not CM. 57 
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3) ATP + adenylylselenate = ADP + 3’-phosphoadenylylselenate 1 

 One reactant pair, ATP and ADP are CM. 2 
4) ATP + selenate = adenylylselenate + pyrophosphate 3 

 Two reactant pairs, ATP is not CM. 4 
5) 2-C-methyl-D-erythritol 4-phosphate + CTP = 4-(cytidine 5’-diphospho) -2-C-methyl-erythritol + pyro-5 
phosphate 6 

 Two reactant pairs, CTP is not CM. 7 
6) L-Alanine + 2-Oxoglutarate = Pyruvate + L-Glutamate 8 
 9 
3. Reversibility of biochemical reactions. Strictly speaking, all reactions are reversible in principle. How-10 
ever, for the purpose of reconstruction and analysis of the metabolic network in a physiologically meaning-11 
ful sense, it is important to define the reversibility according to real physiological situation. Information 12 
concerning reversibility and direction of reactions is shown in the KEGG PATHWAY maps (reflected in the 13 
file reaction_mapformula.lst of the LIGAND database) for some reactions, and the experimental proofs are 14 
collected in the BRENDA database. The criteria for irreversible reactions described by Ma and Zeng (2003 15 
a) have been generally adopted with only one exception: the reactions, where a sugar unit was transferred 16 
via an activated sugar (UDP-, NDP- and dTDP-sugars), are treated as reversible because the high energy 17 
bond is preserved. 18 
 19 
 20 
A few new rules are introduced: 21 

 If both directions are possible depending on different biological situations, this reaction is treated as 22 
reversible. 23 

 If the reversibility is uncertain, the reaction is treated as reversible. 24 

 If ∆G of the reaction is close to 0, the reaction is treated as reversible. For example: 25 

CTP + R-Pi ↔ CDP-R + PPi 26 

UDP-sugar + A ↔ UDP + B 27 
 28 
However, almost all the rules have exceptions. For example: 29 

 Hydrolysis reactions are usually irreversible. But if the hydrolysis happens within a molecule (ring 30 
cleavage and without products left), then it can be reversible. 31 

 Hydrolyase reactions are usually irreversible, but sometimes reversible according to the experimental 32 
data collected by BRENDA. 33 

 34 
4. Non-enzymatic spontaneous reactions. Biochemical reactions are not always catalyzed by enzymes. 35 35 
non-enzymatic spontaneous reactions were defined previously in the LIGAND database. However, we 36 
found that the spontaneous mutarotation reactions for sugars were not described in the LIGAND database 37 
unless the reaction was also known to be catalyzed by enzymes. It is known that sugars, esp. pentose, hex-38 
ose and its derivates, may have three interconvertible forms in aqueous solution: α-, β-anomer and the 39 
open-chain isoform (Bailey et al., 1970). The isoforms are distinguished as different compounds in the 40 
LIGAND database, and some enzymes exhibit strong optical specificity to only one of the isoforms. These 41 
spontaneous reactions are indispensable for reconstruction of a functioning metabolic network. For exam-42 
ple, starch may enter the pentose phosphate pathway via a pathway shown in Figure 1. The second step can 43 
be catalyzed by the enzyme EC 5.3.1.9, but also takes place spontaneously with a halftime of 1.5 seconds 44 
(Bailey et al., 1968). If the spontaneous reaction is not considered, the missing of EC 5.3.1.9 will make it 45 
impossible for starch to enter the pentose phosphate pathway in this case. It should be mentioned that not 46 
all the spontaneous mutarotation reactions take place as fast as the conversion between α- and β-D-47 
glucose-6-phosphate. For example, the mutarotational half-time of α- or β-D-glucose is approximately 48 
seven minutes under physiological conditions (Bailey et al., 1968). 49 
 50 
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Figure 1: A pathway for starch to enter the pentose phosphate pathway. 

Fourty-one spontaneous reactions for sugar mutarotation reactions were introduced in this work. Together 1 
with those spontaneous reactions already defined by LIGAND, the overall number of spontaneous reactions 2 
reached 76. A spontaneous reaction is included during reconstruction of an organism-specific metabolic 3 
network, only if one of its reactants is involved in the enzymatic reactions known for this organism. 4 
5. Balance of COHNSP. In some cases the reactions of the database show incompleteness concerning the 5 
stoichiometry. This means that the number of the elements C, O, H, N, S or P for example is not the same 6 
on both sides of a reaction equation, i.e. educts and products. In order to get stoichiometric balanced reac-7 
tions it was necessary in such cases to introduce or add molecules like CO2, O2, N2, H2O etc. in a suitable 8 
factor. 9 
6. Error correction. Although the LIGAND database was improved continuously, errors and inconsistencies 10 
besides the problem of reversibility still exist (Tab. A2 of supplementary material). These errors were 11 
corrected manually according to our biological knowledge or the literature information. Some examples 12 
are: 13 
The reaction R00011: 2 manganese + 2 H2O = H2O2 + 2 manganese + 2 H

+
,
 
was corrected as: 2 Mn(II) + 2 14 

H
+
 + H2O2 = 2 Mn(III) + 2 H2O. Manganese was distinguished as Mn(II) and Mn(III), and the reaction is 15 

treated as irreversible according to BRENDA. 16 
In the reaction R00329: NDP + H2O = nucleotide + orthophosphate, the product nucleotide was designated 17 
as NMP to avoid ambiguity. 18 
Altogether 107 reactions have been corrected in this way. 19 

2.4 Network reconstruction and analysis 20 

The organism-specific metabolic network was reconstructed based on the list of Enzyme Commission 21 
numbers (EC) defined for each model organism using the following sources:  22 

 KEGG (Kanehisa et al., 2010) for Homo sapiens (human), Saccharomyces cerevisiae (yeast), 23 
Ureaplasma urealyticum, Mycoplasma pneumoniae, Mycoplasma genitalium (low GC content 24 
gram

+
 bacteria) and Borrelia burgdorferi (spirochete) 25 

 BRENDA (Scheer et al., 2010) and (Ma and Zeng, 2003 a) for Escherichia coli K-12 MG1655 (γ-26 
subdivision of proteobacteria) 27 

 (Sun et al., 2007) for a filamentous fungus Aspergillus niger.  28 
The relevant reactions were extracted from the reaction database concerning their reversibility as well as 29 
reactant pairs by using VBA scripts and transferred into a special network format, which could then be 30 
interpreted by programs such as Cytoscape (Christmas et al., 2005) or Pajek (Batagelj and Mrvar, 1998), 31 
typically as a metabolic or reaction graph. In the metabolic graph, nodes or vertices represent metabolites. 32 
Irreversible reactions are shown as arcs and reversible ones as edges or bi-directed arcs. In the reaction 33 
graph the nodes are the reactions while the arcs/edges represent the metabolites (Wagner and Fell, 2001). 34 
In order to evaluate the impact of the database upgrade, the metabolic networks reconstructed from the 35 
former and upgraded databases were analyzed and compared in terms of functional and structural parame-36 
ters of the networks, such as modularity-based network decomposition, shortest path, network diameter, 37 
average path length, and centrality etc. 38 
Network decomposition is necessary for functional analysis of large-scale, genome-wide networks that are 39 
often hampered by the problem of combinatorial explosion due to the complexity of networks. Network 40 
decomposition is to break the network into biologically meaningful modules so that the connections among 41 
the nodes within a module are maximal and those between putative modules are minimal. Our group im-42 
plemented a modularity-coefficient based program called ncluster, which was proved to be able to deduce 43 

starch 

 

α-D-glucose-6-phosphate 

EC 1.1.1.49 

EC 2.4.1.1 

EC 5.3.1.9 

pentose phosphate pathway 

β-D-glucose-6-phosphate 

spontaneous 
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biological meaningful modules from a reaction graph (Rosa da Silva, 2006 and personal communication; 1 
Ma et al., 2004). In this study, both the genome-wide organism-specific network reconstructed from the 2 
former and upgraded reaction databases (only the largest connected part) and its giant strong components 3 
(GSC) (Kumar et al., 2002; Ma and Zeng, 2003 b) were tested for decomposition using this program. The 4 
GSC was extracted from the genome-wide network using the program package Pajek (Batagelj and Mrvar, 5 
1998). 6 
Further network parameters like shortest path (SP; Cormen et al., 2001), network diameter (i.e. the longest 7 
of all SP), average path length (AL; Batagelj and Mrvar, 1998), centrality (betweenness and closeness; 8 
Brandes, 2000, 2001; Freeman, 1977) and the node degree distribution (Newman, 2003) were analyzed by 9 
using Pajek. The AL was calculated both for the whole network (ALW) and for the GSC (ALG). Parame-10 
ters like the SP, the number of nodes (i.e. network size) and edges, the average number of neighbors and 11 
connected pairs were calculated with the program Cytoscape (Christmas et al., 2005). This program was 12 
also used for visualization of the networks. 13 

3 RESULTS AND DISCUSSION 14 

3.1 Statistical comparison of the two versions of databases 15 

In total, the upgraded database contains 6851 reactions. This number is almost doubled in comparison to 16 
the previous database (3565 reactions having connection pairs; Ma and Zeng, 2003 a). The upgraded data-17 
base has 3525 different EC numbers (2943 complete ones) while the previous database had 3115 EC num-18 
bers (2643 complete ones). It should be noticed that one enzyme might be able to catalyze more than one 19 
reaction and many different enzymes might catalyze the same reaction. The number of reactions in the 20 
upgraded database includes 76 non-enzymatic spontaneous ones, of which 41 are spontaneous sugar muta-21 
rotation reactions newly introduced by us (see Materials and Methods). At least 3286 reactions, or 48 % of 22 
the upgraded database, represent new entries in comparison to the former version of the database (Ma and 23 
Zeng, 2003 a, Tab. 1). 24 
In the upgraded database, there are 4304 (1789 in the former version) irreversible reactions and 2547 (1776 25 
in the former version) reversible ones including the 41 spontaneous mutarotation reactions. 235 irreversi-26 
ble reactions of the former database were changed as reversible while 731 reversible ones were changed to 27 
irreversible (Tab. 1). Totally, the reversibility of 27 % of the reactions was changed according to experi-28 
mental data from literature. 29 
For many pathways, especially for those involved in the secondary metabolism, which are of increasing 30 
biological and biotechnological interest, the upgraded database contains significantly more reactions (Tab. 31 
2). 32 

3.2 Impact of the database upgrade 33 

To demonstrate the impact of the database upgrade, the metabolic networks for three model organisms, 34 
Homo sapiens (hsa), Aspergillus niger (anig), and Escherichia coli K-12 MG1655 (eco), were reconstruct-35 
ed using the different versions of bioreaction databases and compared in details (see Materials and Meth-36 
ods). 37 

3.2.1 Number of nodes. 38 

The networks based on the upgraded database include more reactions and metabolites than those based on 39 
the previous database (Tab. 3, Fig. 2 and supplementary Fig. A1). The number of metabolites (nodes) in-40 
creased in all three examined organisms by more than 50 % while the number of reactions increased by 41 
more than 80 %. In the giant strong components (GSC) the number of metabolites and reactions was even 42 
doubled. Simultaneously, the number of isolated reactions and metabolites decreased because many in the 43 
previous network isolated metabolites and reactions were now reconnected to the major network via the 44 
newly introduced reactions (Fig. 2 and supplementary A1). For instance, in the human metabolic network 45 
based on the previous database (Fig. 2 A) there was a disconnected subnetwork consisting of 45 reactions 46 
(arcs/edges) and 33 metabolites (yellow nodes). As can be seen from Figure 2, this part is now integrated 47 
into the main metabolic network reconstructed from the upgraded database. 48 
 49 



 8 

A B C 

Figure 2: Comparison of the organism-specific metabolic networks for H. sapiens (hsa), reconstructed from the former [A] and 1 
upgraded [B and C for details] bioreaction databases. The network based on the upgraded data material shows a higher complexity 2 
and less disconnected parts than those based on the former database (Ma and Zeng, 2003 a). The example (yellow nodes) shows the 3 
integration of metabolites and reactions of the bile acid and steroid hormone biosynthesis into the major network. 4 

A closer analysis shows that 28 metabolites belong to the steroid hormone biosynthesis pathway, two to 5 
the bile acid biosynthesis, and one to both pathways. For the left two metabolites there is so far no infor-6 
mation available in the KEGG database concerning the pathways involved. It is known that human can 7 
synthesize bile acid and steroid hormone de novo. It is logic that their synthesis pathways should be con-8 
nected to the main metabolic network. Now with the application of the upgraded database the missing links 9 
were identified (Fig. 2 B and C for details). Responsible for the integration of this part into the main net-10 
work are two reactions which belong to both the bile acid and steroid hormone metabolism (R01461 and 11 
R01462). Another two reactions, R03310 and R07215, belonging to the steroid hormone metabolism, 12 
connect another formerly separated 4-node part (consisting of four metabolites, C01189, C03845, C05110, 13 
and C05111, blue nodes) and two new metabolites (C13550 and C15518, that are not defined in the old 14 
database, green nodes) into the main network. 15 
Of the four connecting reactions (Fig. 2 C), R07215 only occurs in the upgraded database whereas the 16 
other three occur in both versions. The EC number for R03310 has been updated in the new database. 17 
Therefore only with the new database, this reaction can be extracted for H. sapiens. Integration of the four-18 
metabolite subnetwork is mediated by the reactant pair (cholesterol and cholesta-5,7-dien-3-beta-ol) built 19 
from any of the two reactions R03310 and R07215. For the last two closely related reactions (R01461 and 20 
R01462), only one reactant pair has been described in the former database while two reactant pairs are 21 
defined now in the upgraded database based on the rule of following the C-flow. Exactly the second addi-22 
tional reactant pair finally links the isolated 33-node subnetwork to the main network via the reactant pair 23 
of cholesterol ester and acyl-CoA built from R01461 or via the pair of cholesterol ester and fatty acid from 24 
R01462 (red arcs/edges). The connecting metabolites for the integration of the mentioned subnetworks or 25 
parts are labeled by a red border. 26 

3.2.2 Node degree.  27 

Table 4 shows the number of the first neighbors for 23 potential hub metabolites (i.e. nodes with a rela-28 
tively high connection degree) in the organism-specific metabolic networks. Most of the hub metabolites 29 
have significantly more first neighbors for each tested organism with the upgraded datasets. For example, 30 
acetyl-CoA has 51 first neighbors in the metabolic network of A. niger reconstructed with the updated 31 
database, while only 12 first neighbors with the former database. This is mainly due to the increase of 32 
reaction number but also because of modified rules for potential currency metabolites and reactant pairs. 33 
Moreover, glycans (usually termed as G number instead of C number) have now been recognized in this 34 
work but not in the former database (Ma and Zeng, 2003 a), where these substances have been ignored. 35 
The estimated average number of first neighbors, (NetworkAnalyzer, undirected graph) is for all organ-36 
ism-specific networks based on the former dataset smaller than for those based on the upgraded data mate-37 
rial (Tab. 5). It is remarkable, that the values for A. niger are a little bit smaller than those for E. coli, alt-38 
hough the network of A. niger has more nodes and reactions (Tab. 3). This indicates that the network size 39 
alone (i.e. the node quantity) tells nothing about how dense the nodes (metabolites, substances) are actually 40 
connected. 41 
The average of node degree (input, output and all) for each organism-specific network (whole network 42 
and also the GSC) were estimated by Pajek (Batagelj and Mrvar, 1998) using a directed graph. The num-43 
ber of neighbors and the node degree are not mandatory the same because it is possible that two nodes are 44 
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connected by more than only one arc/edge, e.g. in the case of two irreversible reactions with opposite di-1 
rections. Therefore the node degree or connectivity has to be ≥ the number of first or direct neighbors 2 
found. The average of node degree slightly increased with the upgraded database (Tab. 5). 3 
Another parameter, number of connected pairs (amount of two nodes respectively regarded as a pair of 4 
nodes which are connected by edges), shows dramatic differences between the networks (Tab. 5), recon-5 
structed using the former and upgraded datasets. With the upgraded database, the number of connected 6 
pairs is 3 to 4 times higher than that with the former database, for all compared organisms. More im-7 
portantly, the percentage of connected pairs is 53 %-59 % with the upgraded database while 31 % to 38 % 8 
with the former database. This means that the network constructed with the upgraded database not only 9 
quantitatively has more connected pairs, but is also qualitatively much better inter-connected, which can 10 
also be seen from the network pictures intuitively (Fig. 2 and supplementary Fig. A1). 11 
As we mentioned in the Methods section, the currency metabolites (CMs) cannot be defined per se. In 12 
some cases, the potential CMs are treated as normal metabolites. Table A1 (supplementary material) listed 13 
the most important potential CMs (sorted by their occurrences in the upgraded reaction database) and their 14 
direct neighbors in the organism-specific metabolic networks according to the former and upgraded da-15 
tasets. In most cases the number of first neighbors of special substances (not necessarily the node degree) 16 
was stable or only slightly changed between the metabolic networks constructed from the two databases. 17 
However, in some cases, e.g. ATP, one of the most frequent substances in both databases, shows a signifi-18 
cant higher number of neighbors in the organism-specific networks based on the upgraded reaction data-19 
base. This phenomenon can also be recognized for similar substances like CTP, GTP, UTP, and AMP, and 20 
as well as glutathione. Changes for NAD

+
/NADH and NADP

+
/NADPH were small, although they are 21 

among the most frequent substances in the list. The modification of the rules for CMs (see Materials and 22 
Methods) certainly has influence on the first neighbors of some substances. As an example, L-glutamate 23 
has a higher number of neighbors in the new organism-specific networks compared to the older ones (data 24 
not shown) but this substance explicitly is not treated as a potential CM in the upgraded reaction database. 25 

3.2.3 Modularity. 26 

The modularity (Ma et al., 2004; Clauset et al., 2004; Newman, 2004 a, b, 2006; Newman and Girvan, 27 
2004) of both the larger connected part of the organism-specific metabolic networks of the three organisms 28 
and also their GSC components was estimated and analyzed (see Materials and Methods). The reaction 29 
graph was used instead of the metabolic graph (see above). In comparison to the former dataset, for the 30 
GSC, of the networks based on the upgraded database, the number of reactions almost doubled while the 31 
number of arcs/edges nearly quadrupled (Tab. 6). Consequently, the total number of pathways involved 32 
was greatly increased by up to 100 %. The best modularity of the GSC went down, from 0.67 to 0.55 for E. 33 
coli, from 0.75 to 0.52 for A. niger and from 0.79 to 0.65 for H. sapiens. The number of modules remained 34 
unchanged for E. coli, but much reduced for A. niger and H. sapiens. 35 
The increased network complexity (node number and arc/edge number) reasonably have impact on modu-36 
larities: the nodes are so densely connected that the breakdown of the network is costly. The question is 37 
whether the new decomposition is still biologically meaningful. Ideally, all successive reactions conduct-38 
ing a complete metabolic pathway are confined in the same module. However, because one reaction can 39 
involve in many metabolic pathways and the metabolic pathways are interconnected, the reactions con-40 
ducting a pathway may be decomposed into several modules according to the optimal modularity algo-41 
rithms. The less number of modules the specific pathway-belonging reactions are distributed into, the more 42 
biologically meaningful the decomposition is. We compared the distribution of metabolic pathway belong-43 
ing reactions among the modules. Indeed, for most of the metabolic pathways, the reactions are less dis-44 
tributive when the upgraded database is applied. For example, the GSC network of H. sapiens based on the 45 
upgraded database has 31 reactions belonging to the valine biosynthesis/degradation pathway, which are 46 
partitioned into two modules, while the GSC based on the old database has 10 reactions which are parti-47 
tioned into three modules. 48 
Interestingly, if we look at the distribution pattern of the belonging pathways across the modules, more 49 
pathways tend to be co-present or co-absent when applying the updated database. For example, reactions 50 
belonging to the pathways of glutamate and glutamine metabolism, urea cycle, arginine, and proline syn-51 
thesis are always found also in three modules in case of the H. sapiens GSC based on the upgraded data, 52 
whereas with the former database, reactions belonging to the glutamate and glutamine metabolism are also 53 
found in other modules additionally. The same co-distribution pattern are also found for the pathways 54 
threonine, methionine, and lysine synthesis, as well as the pathways for pentose phosphate metabolism, 55 
purine, folate, and riboflavin synthesis. The co-distribution pattern of these pathways are consistent to their 56 
tight biological relations. 57 
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3.2.4 Changes in further network parameters. 1 

Shortest path. The shortest path (SP; Cormen et al., 2001) between two selected nodes in a graph is the 2 
path having the lowest costs (in a weighted graph) or simply the smallest number of steps (unweighted 3 
graph). In the case of a metabolic network, the SP describes the number of necessary reactions to convert 4 
one metabolite into another. It should be noticed that the shortest path is not necessarily the same as the 5 
metabolic pathway defined in the biochemistry textbook (Rosa da Silva, 2006). We analyzed the SPs cal-6 
culated by the software Cytoscape (Christmas et al., 2005) and by SPUL (Kamphans and Stelzer, 2008), 7 
which yields biologically more feasible paths, but cannot handle large networks due to the computational 8 
complexity. The SP from D-glucose to pyruvate based on the upgraded database was shorter than the one 9 
based on the former database in all the three organisms studied (Tab. 7). The natural biochemical pathway 10 
is often different from the SP calculated. The natural glycolysis pathway is composed of nine steps (i.e. ten 11 
nodes/metabolites) from D-glucose to pyruvate (Ma and Zeng, 2003 a). In the network of H. sapiens based 12 
on the upgraded database, four glycans which do not belong to the glycolysis were involved in the estimat-13 
ed SP from glucose to pyruvate. The higher connectivity degree of the networks based on the upgraded 14 
database (which results in alternative short cuts) may be one of the reasons causing shorter SPs. 15 
A biochemical pathway may be longer than a graph-theoretical shortest path because a network contains 16 
reversible reactions that lead to shortest paths that are not meaningful in a biochemical sense: Given a 17 
reaction that leads from a substrate to two different products and back — such as from 2-dehydro-3-deoxy-18 
D-galactonate 6-phosphate (KEGG compound ID: C01286) to glyceraldehyde 3-P (C00118), and pyruvate 19 
(C00022) —, it is possible to find a shortest path that leads from one product via the substrate to the other 20 
one. To avoid this effect, it is necessary to store the reaction types as labels on the edges of the network, 21 
and assure that a shortest path passes no label twice (Rosa da Silva, 2006). Unfortunately, such paths are 22 
hard to compute, see Chapter 4. 23 
Centrality indices. The network betweenness centrality expresses how many SP go through a node. A 24 
higher value of this parameter stands for a greater importance of the node in the whole network (Brandes, 25 
2000, 2001; Freeman, 1977). The overall network betweenness centrality is calculated based on the cen-26 
trality value of each node (Pajek; Batagelj and Mrvar, 1998). For the GSC based on the former and up-27 
graded databases, the measured centrality is shown in Table 7. Astonishingly only the centrality value for 28 
A. niger increased with the usage of the upgraded data material whereas the values for E. coli and also H. 29 
sapiens decreased. 30 
Another estimated centrality index, called the closeness centrality, describes how close the position of a 31 
node to all other nodes in a network is. The closeness centrality is estimated as the reciprocal of the aver-32 
age distance from a node to all other nodes (Brandes, 2000, 2001; Rosa da Silva, 2006; Rosa da Silva et 33 
al., 2007). For the network GSC based on the former and upgraded data the three parameters input, output, 34 
and all closeness centrality can be calculated as described previously (Pajek; Batagelj and Mrvar, 1998). 35 
For the three model organisms tested here, all three parameters increased when the upgraded data material 36 
was applied (Tab. 7), indicating that in general the nodes in the network based on the upgraded data mate-37 
rial are more centralized and therefore less peripheral. 38 
Average path length and network diameter. The impact of the database update on the average path length 39 
of the whole networks (ALW) and of the GSC (ALG) as well as the network diameter (Batagelj and 40 
Mrvar, 1998) are shown in Figure 3 and Table 7 for all organism-specific metabolic networks. The values 41 
of both parameters for the network based on the updated database are smaller. The ALW is proportional to 42 
the network diameter (the correlation coefficient r

2
 = 0.97; Fig. 3 A), revealing that the correlation between 43 

these two parameters found previously (Ma and Zeng, 2003 a) is still conserved. And the ALG is also 44 
roughly proportional to ALW (r

2
 = 0.69, Fig. 3 B), that is consistent to the previous finding (Ma and Zeng, 45 

2003 b). Though the network properties are altered significantly, such as a decrease in the AL and network 46 
diameter and an increase in the average node degree, the new organism-specific networks still belong to 47 
scale-free networks (Barabási and Bonabeau, 2003) in general. 48 

3.2.5 Glucose subnetwork. 49 

The glucose subnetwork is a subset of the whole network, where all the metabolites can be converted 50 
(reachable) from glucose. The glucose subnetworks were extracted from the whole network (directed 51 
graph) by using the BFS-algorithm (breadth first search; Broder et al., 2000; Cormen et al., 2001; Pajek, 52 
Batagelj and Mrvar, 1998), and its features are shown in Table 8. Similar to the whole network and the 53 
GSC, the glucose subnetwork based on the upgraded database shows a higher complexity as indicated by 54 
the immense increased number of nodes, the smaller AL value and the smaller distance between glucose 55 
and its farthest reachable metabolites. Remarkable is the finding that the estimated AL for the glucose 56 
subnetworks based on the upgraded data always shows a value close to eight whereas this value is higher 57 
but diverse for those based on the former database (Tab. 8). Further analysis of other organism-specific 58 
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glucose subnetworks based on the upgraded data material confirmed that many of them also show values 1 
for the AL around eight (data not shown). 2 

 

A 

 

B 

Figure 3: Correlation between the average path length (AL) of the whole network (ALW) and the network diameter [A], 3 
the AL of the whole network (ALW) and that of the giant strong component (GSC, ALG) [B] of the organism-specific 4 
metabolic networks. The reconstruction of the networks is based on both the former (Ma and Zeng, 2003 a) and upgrad-5 
ed bioreaction databases. It is obvious that by using the upgraded database for the reconstruction of metabolic networks, 6 
the relation between the parameters shown has been conserved. 7 

3.3 Comparison with literature-based metabolic networks. 8 

The automatically reconstructed metabolic networks based on the upgraded database were compared with 9 
the recent human-curated literature-based metabolic network for H. sapiens and for the yeast S. cerevisiae 10 
(sce). In the recent work of Ma et al. (2007), the reconstructed Edinburgh human metabolic network con-11 
tains 2823 reactions, only slightly less reactions than our metabolic network for human (2897 reactions, 12 
Tab. 9). The human metabolic network reconstructed by Duarte et al. (2007), called Recon 1, contains 13 
1982 unique metabolic reactions (excluding transport reaction and not considering the compartment speci-14 
ficity) and 1509 unique metabolites if ignoring the compartment information. These numbers are signifi-15 
cantly less than our human network, indicating that the network automatically reconstructed from the up-16 
graded bioreaction database can supply many additional candidate reactions and therefore be helpful for 17 
the manual metabolic network reconstruction. 18 
Our metabolic network for S. cerevisiae based on the upgraded database consists of 1482 metabolites and 19 
1800 reactions. In the work of Förster et al. (2003) the metabolic network for S. cerevisiae contains only 20 
584 metabolites and 1175 reactions which are much less than the size of the network we constructed. For 21 
this comparison it should be noticed, that the work of Förster et al. (2003) was done a few years ago and 22 
the availability of reaction information at that time was not as much as we have now. 23 
Generally speaking, the reconstruction of a metabolic network from literature data costs a lot of time and 24 
efforts. Though such network is very reliable due to the direct experimental proofs, it is incomplete due to 25 
the limited availability of experimental results. Based on the upgraded reaction database and the easy-to-26 
obtain genome annotation information, our method can construct the theoretical metabolic network in 27 
minutes. By comparing the automatic reconstruction and the literature-based manual reconstruction as 28 
shown in the human and yeast metabolic network above, the automatic construction usually compasses 29 
most of the information included in the manual reconstruction, indicating the high accuracy of the auto-30 
matic reconstruction. And in addition, the automatic reconstruction usually predicts much more reactions 31 
and pathways than reported in the literature, therefore forming many genome-scale hypothesis concerning 32 
the new metabolic reactions and metabolic potentials, and finally promoting the organism-specific systems 33 
biology studies. 34 

4 COMPUTING SHORTEST PATHS IN METABOLIC NETWORKS 35 

In this section, we discuss a difficulty that arises when computing shortest paths in metabolic networks (for 36 
example, to evaluate the underlying database): In general, shortest paths computed using a graph-37 
theoretical point of view may not be biologically meaningful, as mentioned in the introduction. If the data-38 
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base is carefully adjusted (i.e., currency metabolites that lead to infeasible shortcuts are removed and re-1 
versibility of reactions is modeled accurately), certain shortest paths can be used. These paths have to meet 2 
an additional constraint, as described in the following. 3 
Let G be a graph (in our case a metabolic network) that consists of a set of vertices (metabolites), V, and a 4 
set of edges (reactions), E, where an edge e=(v1, v2) connects two vertices of the graph. Given two vertices, 5 
sV and tV, a shortest path from s to t in G is a sequence of edges from E that connect s and t using as 6 
few edges as possible. A path that is shortest in the sense of graph theory may not be feasible from a bio-7 
chemical point of view, because it may use the same reaction twice, as explained in Section 3.2.4. 8 
Thus, we are interested only in feasible shortest paths, that is, shortest paths from s to t with distinct reac-9 
tion types. Such a path may be longer than a shortest path, see Figure 4. To store the reactions in the graph, 10 
we use labels for the edges. Altogether, a mathematical model for our problem is the following. 11 

Problem Shortest Path with Unique Labels (SPUL) 12 

Given a graph G=(V, E), a mapping        that assigns a label to every edge, and two vertices, sV 13 

and tV, find a shortest path P=(e1=s, e2, ..., ek=t) with pairwise distinct edge labels; that is, for     14 

      (  )   (  )  15 

 

Figure 4: The shortest path from S to T is S→A→B→T, but this path is infeasible, because it passes the label ‘1’ twice. 

The shortest feasible path is S→A→C→D →T. 

4.1 Shortest Paths in Unlabeled Networks 16 

Given a graph, G=(V, E), it is quite simple to compute the shortest path between two vertices of the graph. 17 
The Breadth-First Search algorithm (BFS), see Algorithm 1, is known to every first-grade student of com-18 
puter science. Even if the edges have different length, the problem is still easy to compute using Dijkstra’s 19 
algorithm; see, for example, Cormen et al. (2001). 20 
Note that BFS creates a tree of all shortest paths by storing for every vertex, v, its predecessor, v.father, on 21 
the shortest path to the start vertex. Thus, a shortest path from a given vertex to the start vertex can be 22 
found simply by following the father pointers. 23 

4.2 Shortest Paths with Unique Labels 24 

Things get considerably harder, if we add labels to the edges and require that no label is passed twice on a 25 
path between two vertices. Note that neither BFS nor Dijkstra’s algorithm are able to find the feasible 26 
shortest path shown in Figure 4. 27 

4 3 
2 

1 1 2 
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Let Q be a queue of vertices 

insert start vertex into Q 

while Q is not empty do 

 v := first vertex from Q 

 remove first vertex from Q 

 for all vertices v' adjacent to v do 

  if v' was not visited before then 

   v'.father := v 

   mark v' as visited 

   append v' to Q 

   report shortest path to v' 

  end if 

 end for 

end while 

Algorithm 1: BFS 
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To express the hardness of a problem, it is very common in computer sciences to estimate the order of 1 
growth in the resources (i.e., running time and memory requirements) needed by a program as a function in 2 
the input size. In our case, the input size is the number of vertices and edges in the graph. While the run-3 
ning time of BFS is linear in the input size (that is, for example, if we double the input size, the running 4 
time doubles also), we can show that the running time is most likely to be exponential for shortest paths 5 
with unique labels; that is, if we have a graph with v vertices and e edges, the running time is in the order 6 
of 2

v+e
. More precisely, we can show that our problem belongs to the class of NP-complete problems (Gar-7 

ey and Johnson, 1979). It is a widely held belief that there is no sub-exponential solution for NP-complete 8 
problems. The impact of this running time is shown in Figure 5. 9 

 
 
 

Figure 5: Magnitude of resource request for an NP-complete problem compared to BFS. 

Theorem. Given a graph G=(V, E) with a mapping        that assigns a label to every edge, it is 10 

NP-complete to determine if there is a path P=(e1, e2, ..., ek) that uses every label at most once; that is, 11 

for 12 

          (  )   (  )  13 

Proof. We show our theorem using a common technique in computer science known as proof by reduc-14 
tion. That is, we take a well-known hard problem─in our case 3-SAT─and show that this problem would 15 
be easy to solve if the shortest path with unique labels problem (SPUL) would be easy to solve. This is 16 
done by describing how to translate an input to 3-SAT to SPUL such that a solution to SPUL yields a solu-17 
tion to 3-SAT. 18 
Given a set of binary variables, x1, ..., xn, and a set of clauses, C1, ..., Cm, consisting of three literals (i.e., Ci 19 
= Li1   Li2    Li3, where Lik denotes a negated (  ̅̅ ̅ ) or unnegated variable (xk)), the problem 3-SAT asks if 20 
there is an assignment of x1, ..., xn to 0 or 1 such that all clauses are fulfilled (Garey and Johnson, 1979). 21 
A 3-SAT instance can be transformed to a SPUL instance as follows: For every clause Ci we use a clause 22 
gadget that consists of three parallel edges labelled with Lik (i.e., with      or    ̅̅ ̅̅   for an unnegated or ne-23 
gated variable, respectively). The variable gadget for variable xj consists of two parallel paths, one with all 24 
negated labels, one with all unnegated labels. For the whole input, we start with a vertex, s, and add all 25 
variable gadgets followed by all clause gadgets. The last vertex is labeled t; see Figure 6. To find a path 26 
from s to t, we have to pass either the negated or the unnegated branch for every variable. Thus, after pass-27 
ing the variable gadgets we have either all negated or all unnegated variables left to pass the clause gadgets 28 
without using a label twice. This is possible if and only if the given formula is satisfiable. □ 29 

Figure 6: Transforming a 3-SAT instance to an SPUL instance. 
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 2 

4.2.1 A Memory-Consuming Solution. 3 

We use a modified version of BFS to solve our problem, see Algorithm 2. Similar to BFS, we store all 4 
paths found so far. But instead of storing a shortest-path tree for the vertices as in BFS, we construct a 5 
feasible-shortest-path tree on the edges of the graph, see Figure 7. That is, we store every possible feasible 6 
path leading to a vertex in the tree during the search. When the search reaches a vertex, v, via an edge, e’, 7 
we can determine if the path to v via e’ is feasible (i.e., no label occurs twice). By the BFS-manner of this 8 
algorithm, the first feasible path found to a vertex is also the feasible shortest path. The drawback is that 9 
the algorithm is quite memory consuming, because it stores all feasible paths to all vertices. 10 

4.2.2 Balancing Time and Memory Requirements.  11 

To save memory, we used a different solution by exploiting the fact that a metabolic network has many 12 
parallel edges. Thus, our search does not have to explore all edges incident to a vertex, but only those edg-13 
es that lead to different vertices. Instead of storing one label per edge on a shortest path, we store a set of 14 
labels. This significantly decreases the number of shortest paths that we have to store. The drawback is that 15 
we have to find a feasible combination of labels when the search progresses (i.e., when we want to add a 16 
new edge to a path). This can be solved by a simple backtracking; that is, we successively test combina-17 
tions of labels until we either find a feasible combination or no more combination is possible. The idea is 18 
that in most cases this backtracking does not require much time, because a feasible combination is found 19 
quickly. Only if there is no feasible combination, we have to test all of them. Clearly, this heavily depends 20 
on the structure of the input network. 21 
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Figure 7: An example for a shortest feasible path tree constructed by Algorithm 2. The network consists of three nodes (S, A, and B), three 

edges from S to A, and three edges from A to B. The dashed lines show the shortest feasible path tree. 

Let Q be a queue of edges 

insert “dummy egde” to startnode into Q 

while Q is not empty do 

 e := first edge from Q 

 remove first edge from Q 

 for all edges e' adjacent to e.target do 

  if e'.label was not used on the shortest path from s to e then 

   e'.father := e 

   append e' to Q 

   if e’.target was not visited before then 

    report shortest path to e'.target 

   end if 

  end if 

 end for 

end while 

 

Algorithm 2: Shortest Path with Unique Labels 
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4.2.3 Preprocessing.  1 

Before we start our algorithm, we perform a simple BFS to determine, which vertices can be reached at all 2 
(i.e., there is a feasible or infeasible path). We store these vertices, and abort the search as soon as feasible 3 
paths to all of them have been found. In a second stage of the preprocessing, we perform a simple BFS 4 
again; this time checking if the found path is feasible and reporting feasible paths. 5 

4.2.4 Comparison. 6 

Table 10 shows results for large databases. There was not sufficient memory to compute all paths. Thus, 7 
we compare the number of paths found until the program was stopped because there was no memory left. 8 
It turned out that the memory consuming solution (Alg. A) is much faster than our second approach, but 9 
finds less paths. The preprocessing with BFS further improves the number of found paths. Smaller organ-10 
isms are compared in Table 11: We compared the number of (graph theoretically) shortest paths (SP) to the 11 
number of shortest paths with unique labels (SPUL). Furthermore, we listed the number of biologically 12 
infeasible shortest paths that were found using BFS (i.e., paths such as S→A→B→T in Figure 4).  13 

5 CONCLUSION 14 

In this study, we upgraded the bioreaction database which was first established in 2003 in our group. To-15 
gether with modification of the rules for currency metabolites, revision of reversibility and reactant pairs as 16 
well as addition of more non-enzymatic spontaneous reactions, the updated database contains almost dou-17 
bled number of reactions. Using E. coli, A. niger, and H. sapiens as examples, we could show that the 18 
organism-specific metabolic network, reconstructed automatically by using the upgraded database and 19 
genome annotation, is more complete and more reliable. The network parameters were also significally 20 
affected by the upgrade, however, the reconstructed network remains scale-free. The upgraded reaction 21 
database allowed a fast and accurate reconstruction of genome level metabolic networks. This will further 22 
facilitate the exploitation of genome and experimental information, and accelerate the network-based bio-23 
logical studies. 24 
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Table 1: Statistical comparison of the former (Ma and Zeng, 2003 a) and upgraded bioreaction databases. 

 

 

 

 

Table 2: Comparison of the numbers of reactions involved in the secondary metabolism and the glycolysis pathway in the former (Ma and 

Zeng, 2003 a) and upgraded bioreaction databases. Only the reactions having at least one reactant pair were counted. 

 

 
 
  

Former database Upgraded database
Difference/change 

in reversibility

Reactions total 3565 6851 3286

Number of irreversible reactions (1) 1789 4304 2515/235

Number of reversible reactions (0) 1776 2547 771/731

Number of all (complete) EC numbers 3115 (2643) 3525 (2943) 410 (300)

Spontaneous reactions 35 76 41

Number of reactions

Pathway Former database Upgraded database

Glycolysis/Gluconeogenesis 39 47

Terpenoid biosynthesis 44 146

Diterpenoid biosynthesis 0 83

Monoterpenoid biosynthesis 0 24

Limonene and pinene degradation 0 59

Indole and ipecac alkaloid biosynthesis 0 68

Flavonoid biosynthesis 70 76

Alkaloid biosynthesis I 47 53

Alkaloid biosynthesis II 15 41

Penicillin and cephalosporin biosynthesis 4 17

Streptomycin biosynthesis 5 19

Tetracycline biosynthesis 1 12

Clavulanic acid biosynthesis 0 8

Puromycin biosynthesis 0 10

Novobiocin biosynthesis 0 35
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Table 3: Comparison of organism-specific metabolic networks and their giant strong components (GSC) reconstructed based on the former 

(Ma and Zeng, 2003 a) and upgraded bioreaction databases. 

 
 
  25 

Organism-specific metabolic networks*

eco old eco new anig old anig new hsa old hsa new

Number of metabolites 

(nodes)
1156 1718 1513 2280 1341 2174

Number of reactions 

(arcs/edges)
1217 2172 1593 2871 1498 2897

Number of metabolites 

GSC (nodes)
256 485 288 653 386 718

Number of reactions GSC 

(arcs/edges)
356 792 389 996 511 1173

Number of modules GSC 

(reaction graph)
9 9 8 5 12 8

*eco = E. coli , anig = A. niger , hsa = H. sapiens
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Table 4: The 23 potential hub metabolites and their number of first neighbors in the organism-specific metabolic networks, ranked according 

to the metabolite/organism-specific network with the highest value (i.e. acetyl-CoA/anig new). Only for the substances isocitrate and 

glycerate 3-phosphate no differences in the number of neighbors occurred between the networks based on the former (Ma and Zeng, 2003 

a) and upgraded bioreaction datasets for all three organisms tested. 

 

 
 
  

Organism-specific metabolic networks*

Metabolite name anig new anig old eco new eco old hsa new hsa old

Acetyl-CoA 51 12 44 15 40 13

Pyruvate 36 17 50 24 16 11

Acetate 30 6 15 6 18 5

D -Galactose 24 11 23 10 25 12

L -Glutamate 23 9 21 9 25 11

D -Glucose 15 3 20 7 16 2

Carboxylate 15 6 6 - 16 -

D -Fructose 6-phosphate 14 9 13 7 12 8

Succinate 11 11 11 5 5 3

Propanoyl-CoA 11 11 11 8 11 10

D -Glucose 6-phosphate 11 5 11 6 7 4

5-Phospho-alpha-D -ribose 1-

diphosphate
10 4 12 4 11 4

L -Aspartate 10 7 12 8 13 9

Oxaloacetate 9 6 8 8 8 7

D -Ribose 5-phosphate 9 8 10 8 8 7

D -Xylulose 5-phosphate 8 6 8 6 6 5

D -Glyceraldehyde-3-phosphate 8 9 13 13 7 9

Fumarate 7 4 7 4 6 4

Malonyl-(ACP) CoA 6 2 4 2 5 2

Isocitrate 6 6 6 6 4 4

Citrate 4 2 6 5 5 4

Phosphoenolpyruvate 4 3 7 4 6 3

Glycerate 3-phosphate 4 4 5 5 4 4
*anig = A. niger , eco = E. coli , hsa = H. sapiens

- = no occurrence
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Table 5: Changes in node-specific parameters of organism-specific metabolic networks and their giant strong components (GSC) recon-

structed based on the former (Ma and Zeng, 2003 a) and upgraded bioreaction databases. 

 

 
 

Table 6: Estimated best modularity, number of modules and pathways found, number of nodes and arcs/edges for the giant strong component 

(GSC) of the organism-specific reaction graph based on the former (Ma and Zeng, 2003 a) and upgraded bioreaction databases. 

 
 

Table 7: Changes in further parameters of organism-specific metabolic networks and their giant strong components (GSC) reconstructed 

based on the former (Ma and Zeng, 2003 a) and upgraded bioreaction databases. 

 
 30 
  

Number of connected pairs 517,346 

(38 %)

1,700,176 

(57 %)

716,030 

(31 %)

2,788,696 

(53 %)

663,238 

(36 %)

2,801,572 

(59 %)

Average node 

degree whole 

network

input/output 1.53 1.67 1.49 1.61 1.55 1.74

all 2.11 2.53 2.11 2.52 2.24 2.67

     GSC input/output 2.43 2.73 2.33 2.61 2.27 2.81

all 2.97 3.59 3.02 3.46 2.99 3.66
*eco = E. coli , anig = A. niger , hsa = H. sapiens

[%] = percentage of the number of connected pairs relating to the number of all possible pairs in the netw ork

Organism-specific GSC based on a reaction graph*

eco old eco new anig old anig new hsa old hsa new

Number of reactions (nodes) 436 776 467 986 609 1108

Number of arcs/edges 1769 5620 1829 6880 2032 7309

Best modularity 0.67 0.55 0.75 0.52 0.79 0.65

Number of modules 9 9 8 5 12 8

Number of pathways 48 96 55 110 54 98
*eco = E. coli , anig = A. niger , hsa = H. sapiens

Organism-specific metabolic networks*

eco old eco new anig old anig new hsa old hsa new

Shortest path between D -

Glucose and Pyruvate
6 5 8 7 9 7

Network diameter 44 21 83 43 73 40

Average path length whole 

network (ALW)
10.64 7.54 16.37 9.37 15.53 9.34

Average path length GSC (ALG) 8.73 7.14 10.98 8.61 15.61 8.69

Betweenness centrality GSC 0.39 0.34 0.32 0.44 0.41 0.30

Closeness centrality (all ) GSC 0.16 0.19 0.12 0.17 0.10 0.14
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Table 8: Organism-specific glucose subnetworks with number of metabolites, the average distance (i.e. average path length, AL) among 

reachable pairs and the distance between glucose and its most distant metabolite. The data were generated using the BFS-algorithm (breadth 

first search; Broder et al., 2000; Cormen et al., 2001; Pajek, Batagelj and Mrvar, 1998) together with a directed graph. The organism-specific 

networks are based on the former (Ma and Zeng, 2003 a) and upgraded databases. 

 

 
 

Table 9: Comparison of reconstructed organism-specific metabolic networks based on the upgraded database with also human-curated litera-

ture-based networks. 
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Organism-specific metabolic networks
*

hsa sce

Edinburgh Recon I Upgraded Difference Upgraded Difference

Ma et al. Duarte et al. database to upgrade Förster et al. database to upgrade

Number of 

metabolites 

(nodes)

n.m. 2712 2174 - - 538 584 1482 + 898

Number of 

reactions 

(arcs/edges)

2823 3311 2897 + 74 - 414 1175 1800 + 625

*hsa = H. sapiens , sce = S. cerevisiae

n.m. = not mentioned in the publication

Organism-specific glucose subnetworks
*

eco old eco new anig old anig new hsa old hsa new

Number of metabolites (nodes) 440 769 507 1044 578 1120

Average distance (i.e.  AL) among 

reachable pairs
9.41 7.58 11.52 8.09 10.99 7.88

Distance of most distant vertices 28 23 28 19 35 21
*eco = E. coli , anig = A. niger , hsa = H. sapiens
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Table 10: Examples of running time and found paths starting in vertex 1 (XEON CPU 3.0 GHz, 16 GB memory). 

   Vertices Paths found Running time in min 

 Vertices Edges reachable 

from start 

Alg A Alg B B with 

preproc. 

Alg A Alg B B with 

preproc. 

A. niger 2547 7818 1488 1283 1369 1382 1.2 23.4 23.6 

E. coli 1895 5525 1111 911 1012 1021 1.3 35.6 35.9 

H. sapiens 2474 7873 1614 1347 1507 1526 1.2 20.2 20.5 

 

Table 11: Comparison on the number of paths found in several organism-specific metabolic networks1. 

 uur -CM uur +CM mpn -CM mpn +CM bbu -CM bbu +CM mge -CM mge +CM 

Number of SP 2372 17038 2191 6652 6357 39552 6793 36246 

SP false2 1113 7736 903 2723 3887 22688 3925 17786 

SP correct 1259 9302 1288 3929 2470 16864 2868 18460 

Number of SPUL 1308 13306 1601 4577 2513 22809 3061 22281 

1eco = E. coli, anig = A. niger, hsa = H. sapiens, uur = U. urealyticum, mpn = M. pneumoniae, bbu = B. burgdorferi, mge = M. genitalium,  

  +/- CM: with/without currency metabolites 

2SP containing more than one arc/edge belonging to the same reaction, therefore biological not meaningful 

 40 
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Table A1: List of all potential currency metabolites (CM), their frequency in the former (Ma and Zeng, 2003 a) and upgraded bioreaction databases 

and their number of direct neighbors in the organism-specific metabolic networks reconstructed based on the data of both databases. 

 Frequency of compound in reactions Organism-specific metabolic networks
*
    

Compound in former database 
in upgraded 

database eco old eco new anig old 
anig 
new 

hsa 
old 

hsa 
new 

H2O 1255 2236 n.e. n.e. n.e. n.e. n.e. n.e. 
H

+
 359 1269 n.e. n.e. n.e. n.e. n.e. n.e. 

O2 379 858 n.e. n.e. n.e. n.e. n.e. n.e. 
NADP

+
 387 725 1 2 1 2 1 4 

NADPH 386 722 - 1 - 1 - 1 
NAD

+
 392 666 2 4 4 7 6 9 

NADH 387 657 - 1 - 1 - 1 
ATP 311 467 3 21 4 17 4 20 
CO2 250 430 2 4 4 5 2 2 
Pi 253 395 - 1 - 1 - 1 
CoA 196 371 3 4 3 4 1 3 
ADP 234 333 4 5 4 4 5 6 
NH3 212 297 - 2 3 4 1 1 
PPi 158 288 1 2 - 1 - 1 
S-Adenosyl-L-
homocysteine 91 236 2 2 4 4 2 2 
UDP 95 224 3 6 3 4 3 6 
Acceptor 73 189 - - - - - - 
Reduced acceptor 73 187 - - - - - - 
H2O2 98 162 - 2 - 2 - 2 
AMP 89 160 4 7 9 13 12 17 
Glutathione 27 65 6 28 4 27 4 28 
CMP 48 64 2 4 2 2 3 2 
dTDP 6 48 2 2 2 2 2 2 
HCl 8 45 - - 2 - - - 
3'-Phosphoadenylyl 
sulfate 21 45 3 2 3 2 2 2 
Adenosine 3',5'-
bisphosphate 22 44 2 3 3 4 2 2 
GDP 27 40 4 6 3 3 3 5 
FAD 29 40 1 1 1 1 1 1 
FADH2 29 38 1 - - - - - 
CTP 27 31 3 7 2 9 2 12 
GTP 23 31 7 9 5 9 6 10 
Oxidized ferredoxin 17 31 1 1 1 1 1 1 
Reduced ferredoxin 15 31 n.e. n.e. n.e. n.e. n.e. n.e. 
H2SO4 20 29 1 - 2 1 2 1 
UMP 23 28 4 7 4 6 5 8 
H2SO3 19 26 3 1 4 2 2 1 
UTP 23 26 3 8 2 6 4 7 
Oxidized glutathione 12 26 1 1 1 1 1 1 
HNO2 17 25 2 3 2 2 - - 
Acyl-carrier protein 22 23 2 2 1 1 - 2 
H2S 10 20 1 1 1 1 - - 
ITP 20 20 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized thioredoxin 15 20 1 1 1 1 1 1 
Reduced thioredoxin 15 20 n.e. n.e. n.e. n.e. n.e. n.e. 
Cl

-
 (Chloride) 2 19 - - - - - - 

IDP 19 19 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferrocytochrome c 2 19 1 - 1 1 1 1 
H2 14 18 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferricytochrome c 13 18 1 - 1 1 1 1 
GMP 14 16 6 6 5 6 9 9 
CO 2 13 - 1 - - - - 
NDP 2 13 - 3 - 1 - 3 
CDP 11 13 3 4 3 3 3 4 
dATP 11 13 2 3 1 2 1 2 
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 Frequency of compound in reactions Organism-specific metabolic networks
*
    

Compound in former database 
in upgraded 

database eco old eco new anig old 
anig 
new 

hsa 
old 

hsa 
new 

e
-
 4 12 n.e. n.e. n.e. n.e. n.e. n.e. 

IMP 12 12 n.e. n.e. n.e. n.e. n.e. n.e. 
dADP 12 12 3 3 3 3 3 3 
PQQ 11 12 - - - - - - 
HNO3 8 11 1 2 1 1 - - 
HS2O3 8 11 1 - 1 - 1 - 
FMN 5 11 2 3 2 3 2 2 
OH

-
 1 10 n.e. n.e. n.e. n.e. n.e. n.e. 

NO 8 10 - 1 - - - - 
PQQH2 10 10 - - - - - - 
Ubiquinone 9 10 3 3 2 3 2 3 
Cl

- 
(Chloride ion) 1 9 - - - - - - 

dCMP 8 9 2 2 2 2 3 3 
dGTP 7 9 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized rubredoxin 4 9 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced rubredoxin 4 9 n.e. n.e. n.e. n.e. n.e. n.e. 
PPPi 5 8 n.e. n.e. n.e. n.e. n.e. n.e. 
dCTP 6 8 3 4 1 2 1 2 
dTMP 5 8 n.e. n.e. n.e. n.e. n.e. n.e. 
dUMP 6 8 n.e. n.e. n.e. n.e. n.e. n.e. 
Ubiquinol 7 8 1 1 1 1 1 1 
S 5 7 n.e. n.e. n.e. n.e. n.e. n.e. 
H2Se 7 7 n.e. n.e. n.e. n.e. n.e. n.e. 
SeO3 6 7 n.e. n.e. n.e. n.e. n.e. n.e. 
HBr no occurrence

+
 7 - - - - - - 

dTTP 6 7 n.e. n.e. n.e. n.e. n.e. n.e. 
dUTP 7 7 n.e. n.e. n.e. n.e. n.e. n.e. 
Fe

2+
 no occurrence

+
 6 n.e. n.e. n.e. n.e. n.e. n.e. 

dCDP 6 6 3 3 2 2 3 3 
dGDP 6 6 n.e. n.e. n.e. n.e. n.e. n.e. 
dUDP 6 6 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced FMN 0 6 n.e. n.e. n.e. n.e. n.e. n.e. 
HSO3

-
 1 5 n.e. n.e. n.e. n.e. n.e. n.e. 

Ferricytochrome b5 1 5 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferrocytochrome b5 1 5 n.e. n.e. n.e. n.e. n.e. n.e. 
Electron-transferring 
flavoprotein 2 5 n.e. n.e. n.e. n.e. n.e. n.e. 
Red. elec.-transf. flavo. 2 5 n.e. n.e. n.e. n.e. n.e. n.e. 
O2

.-
 2 4 n.e. n.e. n.e. n.e. n.e. n.e. 

Fe
3+

 no occurrence
+
 4 n.e. n.e. n.e. n.e. n.e. n.e. 

dGMP 4 4 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized adrenal ferre-
doxin 5 4 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced adrenal ferre-
doxin 5 4 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized flavoprotein 2 4 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced flavoprotein 2 4 n.e. n.e. n.e. n.e. n.e. n.e. 
I2 3 3 n.e. n.e. n.e. n.e. n.e. n.e. 
I
-
 2 3 n.e. n.e. n.e. n.e. n.e. n.e. 

H2SeO4 2 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Alkylphosphonate 1 3 n.e. n.e. n.e. n.e. n.e. n.e. 
dAMP 3 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferredoxin 3 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferricytochrome c2 2 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferrocytochrome c2 2 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Quinone no occurrence

+
 3 n.e. n.e. n.e. n.e. n.e. n.e. 

Hydroquinone no occurrence
+
 3 n.e. n.e. n.e. n.e. n.e. n.e. 

Coenzyme F420 3 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced coenzyme F420 3 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized dithiothreitol 0 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Dithiothreitol 0 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Amino group donor 0 3 n.e. n.e. n.e. n.e. n.e. n.e. 
RING 3 3 n.e. n.e. n.e. n.e. n.e. n.e. 
Hg

2+
 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 

HI 2 2 n.e. n.e. n.e. n.e. n.e. n.e. 
H3PSeO3 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 
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 Frequency of compound in reactions Organism-specific metabolic networks
*
    

Compound in former database 
in upgraded 

database eco old eco new anig old 
anig 
new 

hsa 
old 

hsa 
new 

Mg
2+

 2 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Fe 6 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized azurin 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced azurin 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Cytochrome c 2 2 n.e. - n.e. n.e. n.e. n.e. 
Ferrocytochrome c3 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferricytochrome c-553 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferrocytochrome c-553 1 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferricytochrome b1 2 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferrocytochrome b1 2 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Apocytochrome c 2 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Donor 0 2 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized donor 0 2 n.e. n.e. n.e. n.e. n.e. n.e. 
H2S2O3 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
SO2 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Mn 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Br

-
 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 

NMP no occurrence
+
 1 n.e. n.e. n.e. n.e. n.e. n.e. 

Cytochrome c3  1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferricytochrome c3 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferricytochrome b-561 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Ferrocytochrome b-561 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Flavodoxin semiquinone 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Dihydroflavodoxin 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized flavodoxin no occurrence

+
 1 n.e. n.e. n.e. n.e. n.e. n.e. 

Reduced flavodoxin 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Decylubiquinone no occurrence

+
 1 n.e. n.e. n.e. n.e. n.e. n.e. 

Decylubiquinol no occurrence
+
 1 n.e. n.e. n.e. n.e. n.e. n.e. 

Oxidized plastocyanin 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Reduced plastocyanin 1 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Oxidized putidaredoxin 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 
Putidaredoxin 0 1 n.e. n.e. n.e. n.e. n.e. n.e. 
NTP no occurrence

+
 no occurrence

+
 n.e. n.e. n.e. n.e. n.e. n.e. 

dNTP no occurrence
+
 no occurrence

+
 n.e. n.e. n.e. n.e. n.e. n.e. 

dNDP no occurrence
+
 no occurrence

+
 n.e. n.e. n.e. n.e. n.e. n.e. 

dNMP no occurrence
+
 no occurrence

+
 n.e. n.e. n.e. n.e. n.e. n.e. 

 
*
eco = E. coli, anig = A. niger, hsa = H. sapiens 
- = no occurence of substance in the organism-specific metabolic network 
n.e. = not estimated 
+
 = no occurrence in the KEGG database 

0 = no occurrence in the former database 
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Table A2: List of reactions of the upgraded bioreaction database containing a special error type or inconsistency. At all 107 affected reactions 

were identified and had to be improved or corrected based on actual biological knowledge and literature as far as possible. 

Reaction index 
Error 
type: 

stoichiometrical 
not balanced 

wrong direction in 
pathway map 

irreversible reaction 

wrong com-
pound/ not 
specified 

wrong 
pathway 

map 

error in 
chemical 
drawing 

wrong  
reaction 

wrong 
reactant 

pair 

R00011    x     
R00329    x     
R00631   x      
R00632   x      
R00634   x      
R00778   x      
R00993  x       
R01303   x      
R01347  x       
R01348  x       
R01367   x      
R01427     x    
R01433   x      
R01679   x      
R01726     x    
R01827        x 
R02116     x    
R02139       x  
R02222  x       
R02300    x     
R02442  x       
R02724  x       
R02764   x      
R03124  x       
R03376      x   
R03551   x      
R03643       x  
R03765   x      
R03933  x  x     
R04020   x      
R04044      x   
R04097   x      
R04131   x      
R04132   x      
R04224   x      
R04399   x      
R04461  x  x     
R04721        x 
R04776    x     
R04809   x      
R04813   x      
R04895   x      
R04904  x  x   x  
R04908  x    x   
R04931    x   x  
R05083   x      
R05091     x    
R05226   x      
R05302  x       
R05380   x      
R05419  x       
R05465       x  
R05526     x    
R05527     x    
R05528     x    
R05534     x  x  
R05545         
R05552   x      
R05596   x      
R05599   x      
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Reaction index 
Error 
type: 

stoichiometrical 
not balanced 

wrong direction in 
pathway map 

irreversible reaction 

wrong com-
pound/ not 
specified 

wrong 
pathway 

map 

error in 
chemical 
drawing 

wrong  
reaction 

wrong 
reactant 

pair 

         
R05600   x      
R05601   x      
R05602   x      
R05740  x       
R05771   x      
R05775   x      
R05821  x       
R05843   x      
R05864   x      
R06138    x     
R06348     x    
R06369   x      
R06449      x   
R06458  x       
R06459  x       
R06627   x      
R06635  x       
R06636  x       
R06637  x       
R06641  x       
R06643  x       
R06644  x       
R06645  x       
R06731  x       
R06759  x       
R06897   x      
R06942   x      
R06952     x    
R07291   x      
R07390      x    
R07475     x    
R07692     x    
R07693     x    
R07780   x      
R07848     x    
R07849     x    
R07890     x    
R07894     x    
R07898     x    
R07934     x    
R07935     x    
R07936     x    
R07937     x    
R07950     x    
R07951     x    
R07952     x    
R07953         x       
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Figure A1: Comparison of the organism-specific metabolic networks for the two model organisms E. coli (eco) and A. niger (anig), top down, reconstructed from 

the former (left) and upgraded (right) bioreaction databases. The networks based on the upgraded data material show a higher complexity and less disconnected 50 
parts than those based on the former database (Ma and Zeng, 2003 a). 

 


