
This is a pre- or post-print of an article published in
Alanis, A.Y., Hernandez-Gonzalez, M., Hernandez-Vargas, 

E.A.
Observers for biological systems

(2014) Applied Soft Computing Journal, 24, pp. 1175-1182.



Observers for biological systems

Alma Y. Alanisa, Miguel Hernandez-Gonzalezb, Esteban A. Hernandez-Vargasc,∗

aCentro Universitario de Ciencias Exactas e Ingenierias, Universidad de Guadalajara,
Guadalajara, Jalisco, Mexico

bFacultad de Ciencias Fisico-Matematicas, Universidad Autonoma de Nuevo Leon, San Nicolas
de los Garza, Nuevo Leon, Mexico

cDepartment of Systems Immunology, Helmholtz Centre for Infection Research, Inhoffenstraße 7,
D-38124, Braunschweig, Germany

Abstract

Cell counts and viral load serve as major clinical indicators to provide treatment

in the course of a viral infection. Monitoring these markers in patients can be

expensive and some of them are not feasible to realize. An alternative solution

to this problem is the observer based estimation. Several observer schemes re-

quire the previous knowledge of the model and parameters, such condition is not

achievable for some applications. A linear output assumption is required in the

majority of the current works. Nevertheless, the output of the system can be a

nonlinear combination of the state variables. This paper presents a discrete-time

neural observer for non-linear systems with a non-linear output; the mathematical

model is assumed to be unknown. The observer is trained on-line with the ex-

tended Kalman filter (EKF)-based algorithm and the respective stability analysis

based on the Lyapunov approach is addressed. We applied different observers to

the estimation problem in HIV infection; that is state estimation of the viral load,

and the number of infected and non-infected CD4+ T cells. Simulation results

suggest a good performance of the proposed neural observer and the applicability

to biological systems.
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1. Introduction

For different engineering applications it is required to estimate quantities due

to the lack of a complete access to the system states. Therefore, during the past

four decades, state estimation of dynamical systems has been an active topic of

research in different areas such as: fault detection, monitoring, process control

and biomedical systems among others [1].

Automatic control techniques usually assume complete accessibility for the

system state, which is not always possible (cost, technological constraints, etc.)

[2, 3, 4]. Several observers consider a nonlinear transformation [5] or a lineariza-

tion technique [6, 7]. In real applications, there are external disturbances and

parameter uncertainties, nevertheless several approaches do not consider them

[8, 9, 10]. Robust observers have shown good performance even in the presence

of uncertainties, however their design can be complex [1, 11, 12, 13].

Nowadays, intelligent methods (fuzzy systems, neural networks and genetic

algorithms, etc.) have shown to play an important role in the development of state

observers. On one hand genetics algorithms (GAs) have been used to find the op-

timal parameters for the observer design [14, 15, 16]. On the other hand Takagi

Sugeno (TS) fuzzy models have been shown to be an efficient approach to deal

with analysis in the design of model based observers [17, 18, 19, 20, 21]. How-

ever, TS approach can be impractical for common forms in biological systems,

for instance ẋ = x(t)u(t), where x(t) is a state variable and u(t) is a scalar control

[19].

Using the well-known approximation capabilities of neural networks, neural

observers have emerged [4, 22, 23, 24, 25, 26]; one of the main advantages of this

kind of observers is its robustness to uncertainties, external disturbances, among

others. In [27, 28, 29, 30, 31, 32], neural observers are designed to estimate the

state for continuous-time nonlinear systems. Although discrete-time observers

are preferred for real time applications, the discrete-time case has not been ex-

ploited as the continuous one. In [26, 33] neural observers are proposed to esti-

mate the state for discrete-time nonlinear systems. However, several approaches
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mentioned above need the previous knowledge of the plant model at least partially

[28, 29, 30, 31, 32, 33]. The problem of unknown model dynamics are considered

in [26, 27, 34, 35, 36], these only consider the presence of external disturbances.

The main disadvantage of these schemes is that only can work for systems with

linear output. There are several real life applications where the output is a non-

linear combination of the state variables [37], [38]. These works tackle the es-

timation problem for systems with non-linear output. Nevertheless, the previous

knowledge of the model and parameters is also required.

Measurements in biomedical systems have demonstrated to be expensive, dif-

ficult and sometimes not possible to achieve. State estimation by neural observer

may play an important role to provide clinicians a better understanding of the

immune markers in patients with viral infection diseases. Among the differ-

ent classes of infection diseases during last 30 years, HIV has been extensively

studied, that is because HIV can lead to acquired immunodeficiency syndrome

(AIDS). According to statistics in the global summary of the AIDS epidemic from

the World Health Organization (WHO) [39], by the end of 2007 an estimation of

33 million people were living with HIV worldwide. That same year, approxi-

mately 2 million died of AIDS. Nonetheless, there is currently no known cure

to tackle the infection. Clinicians need more information of the infection in pa-

tients, therefore the necessity of novel tools to provide immune function markers

in patients with HIV infection [40].

Observers in HIV infection have been a growing area [36, 40, 41, 42, 43, 44,

45, 46]. The majority of these works have considered continuous time measure-

ments, nevertheless measurements are performed a few times per year. Moreover,

the requirement of the model for the observer design is a drawback in these ap-

proaches.

In this paper we propose a discrete-time recurrent high order neural Luenberger-

like observer for non-linear systems with a non-linear output. This observer is

based on a RHONN (recurrent high-order neural networks), which estimates the

state vector of the unknown model dynamics. The learning algorithm for the
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RHONN is based on an extended Kalman filter (EKF). The respective stability

analysis is included on the basis of the Lyapunov approach, for the neural observer

trained with the EKF. Applicability of the scheme is illustrated via simulations to

the state estimation problem in HIV infection.

2. Mathematical Preliminaries

Throughout this paper, ℜ denotes the field of real number, ℜn stands for the

vector space of all n-tuples of real numbers, ℜn×n is the space of n×n matrices

with real entries, and Z
+ denotes the set of natural numbers. We use k as the

sampling step, k ∈ 0∪Z
+, | • | as the absolute value and ‖ • ‖ as the Euclidean

norm for vectors and as any adequate norm for matrices. To follow a discrete-time

approach, we consider a nonlinear model, see Figure 1, in the following form:

x(k+1) = F (x(k) ,u(k))+d (k)

y(k) = h(x(k)) (1)

where x ∈ ℜn is the state vector of the system, u(k) ∈ ℜm is the input vector,

y(k)∈ ℜp is the output vector, h(•) is a known output function which is Lipschitz

in x(k), d (k) ∈ ℜn is a disturbance vector and F (•) is a smooth vector field and

Fi (•) its entries; hence (1) can be rewritten as:

x(k) =
[

x1 (k) . . . xi (k) . . . xn (k)
]�

d (k) =
[

d1 (k) . . . di (k) . . . dn (k)
]�

xi (k+1) = Fi (x(k) ,u(k))+di (k) , i = 1, · · · ,n
y(k) = h(x(k)) (2)

The system (1) is said to be forced or have inputs. In contrast the system described

without explicit presence of an input u is said to be unforced. For the design of

the observer, the next stability definitions are introduced:
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Definition 1 A subset S ∈ ℜn is bounded if there exists r > 0 such that | x |≤ r

for all x ∈ S.

Definition 2 The solution of the system (1) is said to be semiglobally uni-

formly ultimately bounded (SGUUB), if for any Ω a compact subset of ℜn and all

x(k0) ∈ Ω, there exists an ε > 0 and a number N(ε,x(k0)) such that | x(k) |< ε for

all k ≥ k0 +N.

3. Discrete Time Neural Observer

In this section, we estimate the state of a discrete-time nonlinear system (1),

which is assumed to be observable. Using (2) , we propose a recurrent neural

Luenberger observer (RHONO) with the following structure:

x̂(k) =
[

x̂1 (k) . . . x̂i (k) . . . x̂n (k)
]�

x̂i(k+1) = w�
i zi(x̂(k),u(k))+gie(k)

ŷ(k) = h(x̂(k)) , i = 1, · · · ,n (3)

with gi ∈ ℜp, zi(x(k),u(k)) defined as

zi(x(k),u(k)) =

⎡⎢⎢⎢⎢⎣
zi1

zi2
...

ziLi

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎣
Π j∈I1ξ di j(1)

i j

Π j∈I2ξ di j(2)
i j

...

Π j∈ILi
ξ di j(Li)

i j

⎤⎥⎥⎥⎥⎥⎦ (4)
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with d ji(k) being non-negative integers, and ξi defined as follows:

ξi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξi1
...

ξin

ξin+1
...

ξin+m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(x1)
...

S(xn)

u1
...

um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

In (5), u = [u1,u2, . . . ,um]
� is the input vector to the neural network, and S(•)

is defined by

S(ς) =
1

1+ exp(−βς)
, β > 0 (6)

where ς is any real value variable.

As discussed in [47], the general discrete-time nonlinear system (1) which is

assumed to be observable, can be approximated by the following discrete-time

RHONN representation:

x(k+1) = w∗�z(x(k),u(k))+ εz (7)

where each state component xi has the following form:

xi (k+1) = w∗�
i zi (x(k),u(k))+ εzi, i = 1, · · · ,n (8)

where xi is the i-th plant state, εzi is a bounded approximation error, which can be

reduced by increasing the number of the adjustable weights [47]. Let assume that

there exists the optimal weights vector w∗
i ∈ ℜLi such that ‖εzi‖ is minimized on a

compact set Ωzi ⊂ ℜLi ; which is an artificial quantity required only for analytical

purpose [47]. In general it is assumed that this vector exists and it is constant

but unknown. To the best of our knowledge, a principal disadvantage of this kind

of NN is that does not exist an established methodology to determine its detailed
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structured.

Let us define the w∗
i estimate as wi; then, the weights estimation w̃i (k) and

state observer x̃i (k) errors are defined respectively as:

w̃i (k) = w∗
i −wi (k) (9)

and

x̃i (k) = xi (k)− x̂i(k) (10)

Since w∗
i is constant, then

w̃i (k+1)− w̃i (k) = wi (k+1)−wi (k) , ∀k ∈ 0∪Z
+

The weight vectors are updated on-line with a decoupled EKF, described by

wi (k+1) = wi (k)+ηiKi (k)e(k) (11)

Ki (k) = Pi (k)Hi (k)Mi (k) , i = 1, · · · ,n
Pi (k+1) = Pi (k)−Ki (k)H�

i (k)Pi (k)+Qi (k)

with

Mi (k) =
[
Ri (k)+H�

i (k)Pi (k)Hi (k)
]−1

(12)

and the output error

e(k) = y(k)− ŷ (k) (13)

Thus the dynamics of xi (k+1) can be expressed as

x̃i (k+1) = xi (k+1)− x̂i (k+1)

Therefore

x̃i (k+1) = w∗�
i zi (x(k),u(k))+ εzi −w�

i (k)zi(x̂(k),u(k))−gie(k)
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Adding and subtracting w∗�
i zi(x̂(k),u(k)), it can be written as

x̃i (k+1) = w̃i (k)zi (x̃(k),u(k))+ ε ′zi
−gie(k) (14)

with

ε ′zi
= w∗�

i zi (x̃(k),u(k))+ εzi

zi (x̃(k),u(k)) = zi (x(k),u(k))− zi (x̂(k),u(k))

Moreover, the dynamics of (9) can be expressed as follows:

w̃i (k+1) = w̃i (k)−ηiKi (k)e(k) (15)

The proposed neural observer scheme is portrayed in Figure 2. Thus, con-

sidering (2)-(11) it is possible to establish the following result for an unknown

non-linear system with a non-linear output as follows:

Theorem 1. For system (2), the RHONO (3), trained with the EKF-based al-

gorithm (11) , ensures that the i-th (i = 1,2, · · · ,n) estimation error (10) and the

output error (13) are semiglobally uniformly ultimately bounded (SGUUB); more-

over the RHONO weights remain bounded.

Proof:

If h(•) is a known output function which is Lipschitz in x(k), then

‖h(x(k))−h(x̂ (k))‖ ≤ L‖x(k)− x̂ (k)‖ (16)

with L the Lipschitz constant [48].
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First, let us consider the following candidate Lyapunov function

Vi (k) = w̃T
i (k)Pi (k) w̃i (k)+ x̃T

i (k)Pi (k) x̃i (k) (17)

whose first increment is defined as

ΔVi (k) = V (k+1)−V (k)

= w̃T
i (k+1)Pi (k+1) w̃i (k+1)

+x̃T
i (k+1)Pi (k+1) x̃i (k+1)

−w̃T
i (k)Pi (k) w̃i (k)

−x̃T
i (k)Pi (k) x̃i (k) (18)

Using (11) and (9) in (18), then

ΔVi (k) = [w̃i (k)−ηiKi (k)e(k)]T [Ai (k)]

× [w̃i (k)−ηiKi (k)e(k)]

+[ f (k)−gie(k)]
T [Ai (k)]

× [ f (k)−gie(k)]− w̃T
i (k)Pi (k) w̃i (k)

−x̃T
i (k)Pi (k) x̃i (k) (19)

with

Ai (k) = Pi (k)−Di (k)+Qi

Di (k) = Ki (k)H�
i (k)Pi (k)

f (k) = w̃T
i (k)zi (x(k),u(k))+ ε ′zi
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Hence, (19) can be expressed as

ΔVi (k) = 2w̃T
i (k)Pi (k) w̃i (k)−2w̃T

i (k) [Bi (k)] w̃i (k)

+2η2
i eT (k)KT [Ai (k)]Ki (k)e(k)

+2 f T (k)Ai (k) f (k) (20)

+2eT (k)gT
i [Ai (k)]gie(k)

−w̃T
i (k)Pi (k) w̃i (k)− x̃T

i (k)Pi (k) x̃i (k)

with Bi (k) = Di (k)−Qi. Now, using the following inequalities

XT X +Y TY ≥ 2XTY

XT X +Y TY ≥ −2XTY

−λmin (P)X2 ≥ −XT PX ≥−λmax (P)X2 (21)

which are valid ∀X ,Y ∈ ℜn, ∀P ∈ ℜn×n, P = PT > 0, and using (16), then (20),

can be rewritten as

ΔVi (k) ≤ ‖w̃i (k)‖2 λmax (Pi (k))

−‖w̃i (k)‖2 λmin (Bi (k))

+2‖x̃ (k)‖2‖ηiKiL‖2 λmax (Ai (k))

+2‖ f (k)‖2 λmax (Ai (k))

+2‖x̃ (k)‖2‖giL‖2 λmax (Ai (k))

−‖x̃ (k)‖2 λmin (Pi (k)) (22)
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Substituting f (k) = w̃T
i (k)zi (x(k),u(k))+ ε ′zi

, in (22) , then

ΔVi (k) ≤ ‖w̃i (k)‖2 λmax (Pi (k))

−‖w̃i (k)‖2 λmin (Pi (k))

+2‖x̃(k)‖2 ‖ηiKiL‖2 λmax (Ai (k))

+4
∣∣ε ′zi

∣∣2 λmax (Ai (k))

+4‖w̃i (k)‖2 ‖zi (x(k),u(k))‖2 λmax (Ai (k))

+2‖x̃(k)‖2 ‖giL‖2 λmax (Ai (k))

−‖x̃(k)‖2 λmin (Pi (k)) (23)

Defining

Ei (k) = 2‖ηiKiL‖2 λmax (Ai (k))

+2‖giL‖2 λmax (Ai (k))−λmin (Pi (k))

Fi (k) = λmax (Pi (k))−λmin (Pi (k))

+4‖zi (x(k),u(k))‖2 λmax (Ai (k))

then (23) can be rewritten as

ΔVi (k) ≤ −‖x̃ (k)‖2 Ei (k)−‖w̃i (k)‖2 Fi (k)

+4
∣∣ε ′zi

∣∣2 λmax (Ai (k))

Hence, ΔVi (k)< 0 when

‖x̃(k)‖>
√

4
∣∣ε ′zi

∣∣2 λmax (Ai (k))

Ei (k)
≡ κ1 (k) (24)

or

‖w̃i (k)‖>
√

4
∣∣ε ′zi

∣∣2 λmax (Ai (k))

Fi (k)
≡ κ2 (k) (25)
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Therefore the solution of (14) and (15) is SGUUB; hence, the estimation error

and the RHONO weights are SGUUB [22]. Now following with the proof, let us

consider the Lyapunov function candidate:

Vi (k) =
n

∑
i=1

(
w̃T

i (k)Pi (k) w̃i (k)+ x̃T
i (k)Pi (k) x̃i (k)

)
(26)

ΔVi (k) =
n

∑
i=1

(
w̃T

i (k+1)Pi (k+1) w̃i (k+1)

+x̃T
i (k+1)Pi (k+1) x̃i (k+1)

−w̃T
i (k)Pi (k) w̃i (k)

−x̃T
i (k)Pi (k) x̃i (k)

)
(27)

Therefore, as above, (26) can be expressed as:

ΔVi (k) ≤
n

∑
i=1

(
−‖x̃(k)‖2 Ei (k)−‖w̃i (k)‖2 Fi (k)

+4
∣∣ε ′zi

∣∣2 λmax (Ai (k))
)

with

Ei (k) = 2‖ηiKiL‖2 λmax (Ai (k))

+2‖giL‖2 λmax (Ai (k))−λmin (Pi (k))

Fi (k) = λmax (Pi (k))−λmin (Pi (k))

+4‖zi (x(k),u(k))‖2 λmax (Ai (k))

As a result ΔVi (k)< 0 when

‖x̃ (k)‖> κ1 (k)
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or

‖w̃i (k)‖> κ2 (k)

and if ‖x̃ (k)‖> κ1 (k) and ‖w̃i (k)‖> κ2 (k), ∀i = 1, · · · ,n holds, then ΔVi (k)< 0.

Finally, considering (3) and (13), it is easy to see that the output error has an

algebraic relation with x̃ (k); for that reason if x̃ (k) is bounded e(k) is bounded as

well.

e(k) = h(x̃(k))

‖e(k)‖ = ‖h‖‖x̃ (k)‖

Remark 1. Due to the results presented in Theorem 1, the boundedness of the

state estimation error, the output error and the weights estimation error are es-

tablished on the basis of the Lyapunov methodology without the need of persistent

excitation condition. The proposed learning algorithm (11) is performed on-line.

Therefore neural weights are updated at each sampling for all k ∈ 0∪Z
+ and

there is no stopping criteria for the learning algorithm. The training develop-

ment is ensured by results presented in Theorem 1. This theorem establishes the

accuracy and sensitivity of the state estimation according to bounds (24) and (25).

The main advantage of the proposed RHONO consists on the state estimation

of discrete-time unknown nonlinear systems even though the measurement of the

output system is a nonlinear combination of the states. However, the main draw-

back of this scheme is that does not exist an established methodology to determine

its detailed structured.
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4. Estimation problem in HIV infection

HIV is a retrovirus which kidnaps CD4+ T cells for replication, a fundamen-

tal part of the immune system. After this discovery, researchers have focused on

seeking drug treatments to inhibit HIV infection cycle [55]. The development of

antiretroviral treatments has been one of the most active areas in HIV research.

The main problem to implement clinical protocols is the lack of complete infor-

mation of the infection. Laboratory tests are important for evaluating HIV infected

patients upon entry into care, they provide virologic and immunologic efficacy of

antiretroviral therapy [55].

Two surrogate markers are used routinely: CD4+ T-cell counts and plasma

HIV RNA levels (viral load). On one hand plasma HIV RNA levels should be

measured in all patients on a regular basis thereafter, that is because viral load is

the most important indicator of response to antiretroviral therapy. On the other

hand CD4+ T cell counts serve as the major clinical indicator of immune function

in patients with HIV infection, which is one of the key factors in deciding whether

to initiate or change antiretroviral therapy [55]. The number of infected cells is an

unknown parameter in clinical practice, practitioners could consider this marker

for further decisions to schedule treatments [40].

State estimation in HIV infection has received special attention [41, 42, 43,

44, 45, 46]. These approaches mentioned above require knowing at least partially

the model. Authors in [42] proposed a neural observer with application to HIV

infection. However, this scheme is in continuous time (a drawback for implemen-

tation).

In order to obtain the dynamics of HIV infection, we assume the model pro-

posed by [49] as a black box, which includes the concentration of infected cells

(T ∗), non-infected (T ) as well as the viral load in the blood torrent (V ). The

schematic representation is presented in Figure 3 and the model is presented as

follows:
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Ṫ (t) = sT − kT T (t)V(t)−δT T (t)

Ṫ ∗(t) = kT T (t)V(t)−δT∗T ∗(t) (28)

V̇ (t) = ρT ∗(t)− kdT (t)V(t)−δVV (t)

sT is the source term and represents the generation rate of new CD4+ T cells.

The infection of CD4+ T cells is represented by the term kT T (t)V(t). The amount

of virus produced from infected CD4+ T cells is given by pT T ∗, where pT is the

rate of production per unit time in CD4+ T cells. The death rate of CD4+ T cells

in humans is not well characterized, this parameter has been chosen in a number

of works as δT = 0.01 day−1 [49].

The immune system response is not included explicitly in the model, but this

response is generally considered in the death rate of infected cells; which is a

mixture of natural death and immune system action, in specific the CTL cell re-

sponse. Therefore δT ∗ is larger than uninfected CD4+ T cells, values (from 0.26

to 0.68 day−1) were taken from [49]. Clearance of free virions is the most rapid

process, occurring on a time scale of hours. The values of δV range from 2.06

to 3.81 day−1 [49]. There is a lost of virus due to infection, this is represented

by the term kdT (t)V(t). For more details of the model and parameter values, the

interested reader is referred to research monographs such as [49, 52].

Remark 2. Note that several mathematical models have been proposed to repre-

sent HIV dynamics [49, 50, 51, 52, 53, 54]. However, (28) is a simple model that

has been accepted to model different viral infections: HIV, influenza and hepatitis

[49].

Previous works [36, 41, 42, 43, 44, 45, 46] take into consideration the mea-

surement of CD4+ T cells only as the uninfected population, but in practice this

measurement is a mixed of uninfected and infected number of CD4+ T cells, see
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Figure 4. Therefore, based on the model (28) the output of the system can be

written as follows:

y(k) =

[
y1(k)

y2(k)

]
=

[
T (k)+T∗(k)

V (k)

]
(29)

Remark 3. Fast viral dynamics

Analysing parameter values at the system proposed in [49]; [54] remarked the

possibility to approximate the differential equation for the viral load as an alge-

braic equation if the viral clearance is larger than one day (δV >> 1).

V (t) =
ρT

kdT (t)+δV
T ∗(t) (30)

4.1. Neural observer

The neural observer RHONO proposed in (3) is applied to the HIV model (28),

whose nonlinear dynamics are considered unknown (black-box). We estimate

the concentration of infected cells with the on-line viral load in the blood torrent

as well as the total CD4+ T cell concentration. Therefore the only input to our

RHONN is (29) and V (t) as presented in (30). The following RHONN for infected

cells is considered:

T̂ ∗(k+1) = w11S(T̂ ∗(k))S(V̂(k))+w12S(T̂ ∗(k)) (31)

Note that we only need to estimate the infected number of CD4+ T cells, then

the non-infected cell population can be computed from the measurement of total

cells, that is T̂ (t) = y(t)− T̂ ∗(t).
The training is performed on-line using a parallel configuration, see Figure

2, that means we update the observer only when the output measurements are

sampled. All the NN states and weights are initialized randomly. The covariance

matrices are initialized as diagonal, with non-zero elements as follows: P(0)= 1×
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105, Q(0) = 1×104 and R(0) = 1×103 respectively. The Luenberger parameter

is g = 0.01 and η = 1.3.

It is important to remark that for simulations presented in this section the

RHONO is training on-line; this means that neural weights are updated at each

sampling for all k ∈ 0∪Z
+.

4.2. Takagi-Sugeno observer

The discrete–time Takagi-Sugeno (TS) fuzzy observer is obtained by using

local linearisation in several representative points which may or may not be equi-

libria [56, 57] given the output measurements (29). The following TS model is

presented:

x(k+1) =
m

∑
i=1

wi(z)(Aix(k))+Biu(k)

y(k) =
m

∑
i=1

wi(z)Cix(k)
(32)

where Ai, Bi, Ci are the matrices of the local linear model, z is the scheduling

vector that determines which of the rules are active, and wi, i = 1,2, . . . ,m are

normalised membership functions. The consequent matrices are:

Ai =
∂ f
∂x

∣∣∣∣
z0,i,0

, Bi =
∂ f
∂u

∣∣∣∣
z0,i,0

, Ci =
∂h
∂x

∣∣∣∣
z0,i,0

.

The TS observer has the following form:

x̂(k+1) =
m

∑
i=1

wi(z)(Aix̂(k))+Biu(k)+Li(y(k)− ŷ(k))

ŷ(k) =
m

∑
i=1

wi(z)Cix̂(k)
(33)

where x̂(k) is the state estimate of x(k), the matrices Li, i = 1,2, ...,m are the ob-

server gains, and z is a scheduling vector depending on the output measurements.

For the HIV estimation problem, the following linearisation points are considered:
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T ∈ {250,400,500}, V ∈ {2,3.5,18}, and the TS fuzzy model having 9 rules i is

given as follows:

If y1(k) is Zi
1 and y2(k) is Z j

2 then the model rule is:

x(k+1) = Af x(k)

y(k) = Cx(k)
(34)

where Z j
i are fuzzy sets, i = 1,2,3 and j = 1,2,3. The TS observer takes the next

form:

x̂(k+1) =
9

∑
i=1

wi(z)(Aix̂(k))+Li(y(k)− ŷ(k))

ŷ(k) =
9

∑
i=1

wi(z)Cx̂(k)

(35)

4.3. High-Gain Observers

The high-gain observer can be performed as simple as the linear case if the

nonlinear function gh depends only on the output y(t) and the control input u(t)

[48]. The observer is as follows:

˙̂x = Ax̂(t)+gh(y(t),u(t))+H(y(t)−hx̂(t)) (36)

where H are the observer gains. If A−Hh is Hurwitz then (36) converges asymp-

totically.

5. Observer Results

For comparison purposes, we compute the the root mean square (RMS) value

between the estimated values of the observer Xi and the data given by the model

X̄i from (28) in the following form:

RMS =

√
n

∑
i=1

(logXi− logX̄i)2 (37)
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Figure 5 reveals the performance of the previous observer strategies under dif-

ferent sampling times (k). We can note that the proposed neural observer provides

the best estimations for sampling times less than 24 hours, the high-gain observer

also gives good estimations. Results suggest that the fuzzy observer gives bad per-

formance for small sampling times compared with the other two strategies. This

could be attributed to the gains for the fuzzy observer that introduce noise in the

estimations. Furthermore, we note that the three observer schemes provide simi-

lar estimations for large sampling times, that is more than 80 hours. However, the

estimation errors are very large for any prediction.

The sampling time is a parameter that should be selected on the trade-off be-

tween good state estimations, sampling costs and frequent patient visits to the

hospital. Of course the shorter sampling time, the better estimation is obtained.

Nevertheless, HIV tests are bothersome to the patient and expensive to health ser-

vices (approximately $250 for a single test). Figure 5 suggests we could consider

a sampling time of 12 hours to provide good estimations.

Results presented in Figure 6(a) reveal that the three schemes provide good

estimations for the healthy CD4+ T cells at the end of the first month. However,

for the estimation of infected cells in Figure 6(b) we note there are differences

between the observer schemes. The high-gain and fuzzy observers present longer

transients than the neural observer. After the second month, a constant estimation

error is remained for the fuzzy scheme. The viral load estimations in Figure 6(c)

are similar in the three schemes, however the high-gain observer gives a high peak

at month 1.

The error dynamics of the neural observer are bounded as is shown in Figure

7, showing that we can achieve a reasonable good estimation (error less than 20%)

for infected cells after the first month. Clinicians could consider the number of

infected CD4+ T cells as an additional marker for the scheduling of antiretroviral

therapy. Because measurements can not be performed during small time intervals,

discrete-time observer schemes are important in order to obtain good estimations.

It is important to note that both observers used for comparison purposes (high-gain
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observer and fuzzy one) require the previous knowledge of the model.

6. Conclusions

In this paper, we showed a discrete–time neural observer trained with the

Kalman filter, its respective stability analysis is also presented. The estimation

of CD4+ T cells and viral load in the blood torrent in HIV has been implemented.

The RHONO considers measurements of total CD4+ T cells and viral load in

blood. Simulations results and comparisons with other schemes illustrate the

effectiveness of the neural observer. This observer scheme provides promising

guidelines to help in the design of effective medication protocols. Simulation re-

sults suggest that good estimations can be achieved only after the primary stage

of the infection (first months after infection).
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Figures

Figure 1: Schematic representation for a unknown discrete-time nonlinear system
with nonlinear output

Figure 2: Neural observer scheme
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Figure 4: CD4+ T cells and viral load in blood sample
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Figure 6: Estimation results for different observer schemes: Panel (a) shows
healthy CD4+ T cell estimations, panel (b) shows infected CD4+ T cell estima-
tions and panel (c) shows virus estimations
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