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SUMMARY

The inflammatory gene response requires activation
of the protein kinase TAK1, but it is currently un-
known how TAK1-derived signals coordinate tran-
scriptional programs in the genome. We determined
the genome-wide binding of the TAK1-controlled
NF-kB subunit p65 in relation to active enhancers
and promoters of transcribed genes by chromatin
immunoprecipitation sequencing (ChIP-seq) ex-
periments. Out of 35,000 active enhancer regions,
410 H3K4me1-positive enhancers show interleukin
1 (IL-1)-induced H3K27ac and p65 binding. Inhibition
of TAK1 or IKK2 or depletion of p65 blocked inducible
enhancer activation and gene expression. As exem-
plified by the CXC chemokine cluster located on
chromosome 4, the TAK1-p65 pathway also regu-
lates the recruitment kinetics of the histone acetyl-
transferase CBP, of NF-kB p50, and of AP-1 tran-
scription factors to both promoters and enhancers.
This study provides a high-resolution view of epige-
netic changes occurring during the IL-1 response
and allows the genome-wide identification of a dis-
tinct class of inducible p65 NF-kB-dependent en-
hancers in epithelial cells.

INTRODUCTION

Interleukin 1 (IL-1) is a prototypic pleiotropic cytokine that

strongly induces local and systemic inflammation (Dinarello

et al., 2012). Evidence in humans shows that dysregulation of

IL-1 is sufficient to drive the entire systemic inflammatory

response, thus demonstrating that this cytokine is at the apex

of inflammatory cascades (Aksentijevich et al., 2009). At the

cellular level, the main effect of IL-1 is the rapid reprogramming

of inflammatory gene expression (Schmitz et al., 2011; Weber

et al., 2010).

A central regulator of this gene response in the cytoplasm is

the protein kinase TAK1, which is activated by proinflammatory

cytokines (IL-1, tumor necrosis factor [TNF]), transforming

growth factor-ß (TGF-ß), stressors, and by various toll-like re-

ceptors (TLRs) (Sakurai, 2012). One major role of TAK1 is to

phosphorylate mitogen-activated protein kinases (MAPKs),

which then activate individual p38 and JNK MAPK pathways

(Ninomiya-Tsuji et al., 1999). Hence, the kinase is upstream of

several transcription factors (TFs) such as Jun or ATF family

members, which are all substrates of MAPKs (Shaulian and

Karin, 2002). Also, the TF NF-kB is activated by TAK1-mediated

signals on a pathway involving TAK1-mediating activation of IkB

kinases (IKKs) (Sakurai et al., 1999). These, in turn, phosphory-

late the cytosolic inhibitor IkBa and enable its ubiquitin/protea-

some-dependent destruction, thus allowing nuclear transloca-

tion of NF-kB (Hayden and Ghosh, 2008). The NF-kB p65

subunit has the strongest transactivation potential and its activity

is also controlled by many posttranslational modifications

including IKK-mediated phosphorylation of the p65 C-terminal

transactivation domain at S536, thereby providing an additional

mechanism for fine-tuning NF-kB transcriptional activity (Per-

kins, 2012). Thus, TAK1 is an apical and global regulator of mul-

tiple AP-1 family members and of the NF-kB pathway, but the

consequences of TAK1 activity on nuclear events and chromatin

binding of TFs have not yet been defined.

Enhancers are gene regulatory elements that control the

activity of promoters independent from location, distance, or

orientation (Pennacchio et al., 2013). Enhancers are vital for

lineage determination and maintenance of cell types by orga-

nizing the recruitment of lineage-specific transcription factors,

which provide crucial control of cell-specific genes (Ghisletti

and Natoli, 2013). Accordingly, enhancers are characterized

by specific chromatin states and nucleosomal depletion. Re-

cent evidence shows that active enhancers are associated

with characteristic chromatin signatures, most importantly

H3K4me1, p300 acetyltransferase occupancy, and H3K27

acetylation (Flintoft, 2013). High-resolution studies of these

marks revealed that enhancers are highly abundant gene regu-

latory elements with recent estimates ranging from 25,000 to

several hundreds of thousands (Zhu et al., 2013; Shen et al.,
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2012). Recent work in murine macrophages unraveled PU.1-

dependent lipopolysaccharide (LPS)-regulated enhancers, pro-

viding support for the dynamic nature of the enhancer reper-

toire in innate immune cells (Ostuni et al., 2013). Comparable

information on enhancer regulation by inflammatory cytokines,

which are vital executers of innate immune functions in most

tissues, is lacking.

Because the nuclear signaling network utilized by IL-1 is

largely unexplored, we analyzed IL-1-induced chromatin signa-

tures and TF binding at the genome-wide level. We identified

47,609 p65 peaks of which 1,264 were regulated by IL-1. The

majority of p65 recruitment occurred at intergenic regions of un-

known function. Additionally, we discovered 35,130 enhancers

including 1,575 IL-1-inducible enhancers. A subgroup of 410 en-

hancers shows IL-1-inducible H3K27ac and p65 recruitment and

is found upstream of cytokine-induced genes. The activation of

this type of IL-1-induced enhancers was fully dependent on

the kinase activity of TAK1 and IKK2 and on the presence of

NF-kB p65. The TAK1-p65 pathway also regulates the recruit-

ment kinetics of a number of AP-1 factors to both promoters

and enhancers. The concerted and synchronized activation of

IL-1-driven enhancers provides a unifying molecular mechanism

for the rapid and strong upregulation of inflammatory genes

evoked by this cytokine.

RESULTS

Identification of IL-1-Regulated Intergenic Enhancers
Flanking the CXCChemokine Cluster on Chromosome 4
To identify the number of IL-1-induced genes in epithelial cells,

KB cells were stimulated for various periods of timewith IL-1, fol-

lowed by the analysis of gene expression by microarrays. These

experiments showed the IL-1-inducible and time-dependent

mRNA expression of 241 genes (Figure S1A; Table S1) and

thus indicate that this cell line is well suited to study IL-1-depen-

dent transcription and chromatin regulation. To address the

question of which chromatin-based processes accompany IL-

1-induced and p65-dependent gene expression, we performed

chromatin immunoprecipitation sequencing (ChIP-seq) experi-

ments with antibodies recognizing the NF-kB p65 protein and

chromatin marks typical for active promoters or enhancers as

described above (H3K9ac, H3K4me1, and H3K27ac). In addi-

tion, genome-wide localization of IL-1-triggered transcripts and

ongoing transcription were determined by RNA sequencing

(RNA-seq), or by ChIP-seq using antibodies directed at RNA po-

lymerase II (Pol II) and by measuring the serine 5 phosphorylated

form of Pol II (P(S5)-Pol II), which occurs during transcription initi-

ation (Figure 1A).

For the analysis of ChIP-seq data, we initially focused on a

gene cluster containing the highly regulated chemokine genes

IL8 (CXCL8), CXCL1, 2, and 3 (Figure S1B). These chemokines

lie within a genomic region spanning 0.4 Mb of chromosome 4.

This region showed strongly regulated p65 binding immediately

upstream of the transcriptional start sites (TSSs) of IL8, CXCL1,

2, and 3, reflecting p65 recruitment to canonical NF-kB sites

within the promoters of these genes (Figure 1A, marked by

dotted boxes). In addition, we found strongly induced p65 peaks

located in two intergenic regions flanking the IL8 and CXCL2

genes (Figure 1A, marked by solid boxes). RNA-seq and Pol II

ChIP-seq analyses showed no signs of ongoing transcription

of these intergenic regions (Figure 1A). Repressive chromatin

marks such as H3K9me3 were absent, in agreement with the

biological need to immediately express these chemokine genes

in precarious situations. The histone mark H3K9ac was already

seen in unstimulated cells and IL-1 treatment augmented this

modification at all p65 sites (Figure 1A). Small peaks of basal

H3K27ac were found at the promoters of transcribed genes (Fig-

ure 1A, dotted boxes). Significantly stronger basal H3K27ac

marks were found in the regions surrounding the intergenic

p65 peaks (Figure 1A, solid boxes). After IL-1 stimulation of cells,

H3K27ac levels at these regions increased even further (Fig-

ure 1A, solid boxes). Small areas of basal H3K4me1 were found

at promoters (Figure 1A, dotted boxes), whereas very strong sig-

nals occurred at intergenic regions occupied by p65 (Figure 1A,

solid boxes). However, H3K4me1 marks were not regulated

by IL-1 (Figure 1A, solid boxes). In comparison, inspection of

an unrelated genomic region that did not contain IL-1-regulated

genes showed strong but comparable H3K9ac, H3K27ac, and

H3K4me1 signals as well as many nonregulated p65 peaks (Fig-

ure S2A). These data show that IL-1-induced gene regulation

involves a specific pattern of regulated chromatin marks in asso-

ciation with p65 binding whosemajor features are summarized in

Figure 1B. Moreover, these data suggest that IL-1 specifically

operates through a dual mechanism, which involves p65 binding

to individual gene promoters and additionally p65 association

with putative intergenic enhancers marked by strong H3K4me1

and regulated H3K27ac signals flanking clusters of highly core-

gulated genes.

High-Resolution Mapping of Intergenic and
TSS-Associated p65 NF-kB Binding Sites
To find out whether the patterns of p65 binding and chromatin

modifications described above are restricted to the particularly

strongly regulated chemokine locus on chromosome 4 or

whether they also occur for other IL-1-regulated genes, we

further analyzed the nuclear and genomic distribution of p65.

In KB cells, about 15%–20% of total p65 protein is present

constitutively within the nucleus whereby the insoluble fraction

(N2) that is stably associated with chromatin accounts for only

about 5% (Figure 2A). In line with its capacity to activate the ca-

nonical TAK1-IKK2-NF-kB pathway, IL-1 treatment strongly

increased the amount of p65 in both the soluble (36%) and the

insoluble (15%) fractions resulting in a redistribution of about

50% of total p65 to the nucleus within 1 hr of cytokine exposure

(Figure 2A). IL-1 also induced phosphorylation of p65 at S536

and nuclear translocation of the p50 subunit indicating that the

cytokine controls NF-kB signaling to chromatin through multiple

steps (Figure 2A). To get further insight into the mechanisms

operating downstream of nuclear translocation of p65, the

ChIP-seq data sets were analyzed at the genome-wide level. In

total, we identified 47,609 distinct p65 peaks. Constitutive p65

binding occurred at 46,345 genomic locations, whereas 1,264

p65 peaks were regulated by IL-1 by at least 2-fold (Figure 2B).

Compared to those sites showing constitutive binding, IL-1-

inducible peaks were characterized by much lower basal chro-

matin binding and increased recruitment after induction
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Figure 1. Identification of IL-1-Regulated Intergenic Enhancers Flanking the CXC Chemokine Cluster Located at Chromosome 4

(A) Human epithelial KB cells were stimulated with IL-1 for 1 hr or were left untreated. Then chromatin or total RNA was prepared, and RNA-seq or ChIP-seq

experiments were performed using the indicated antibodies, and read coveragewas determined. Shown are coverage profiles across the humanCXC chemokine

(legend continued on next page)
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(Figure 2B). About 50% of all constitutive binding sites and

almost 75% of all IL-1-inducible sites were located >20 kb up-

stream of the next annotated gene (Figure 2C). Only 2.93%

(728 of 24,828 sites) of all p65 peaks located >20 kb upstream

of the next TSS were overlapping with Pol II and P(S5)-Pol II

peaks, whereas 76% (7,405 of 9,744 sites) of all peaks located

between –0.5 kb and the TSS were associated with Pol II and

P(S5)-Pol II peaks (Figure S2B). These data show that p65 peaks

found close to TSS are associated with actively transcribed

genes, whereas intergenic p65 peaks may have an alternative

function (Figure S2B). At the genome-wide level, regions encom-

passing basal or IL-1-inducible p65 sites were usually associ-

ated with H3K9me3, H3K9ac, H3K4me1, and H3K27ac marks

(Figure 2D). Therewas no change of all fourmarks after IL-1 stim-

locus on chromosome 4. Black dotted frames indicate positions of promoters/transcribed genes. Black solid frames indicate positions of two p65-binding

enhancer regions flanking the IL8 and CXCL2 loci. The top shows a schematic representation of the exons of all transcribed and nontranscribed genes.

(B) Summary of basal and IL-1-regulated chromatin changes within the CXC chemokine cluster.

See also Figures S1 and S2 and Table S1.

Figure 2. Genome-wide Identification and

Location of p65 Binding Sites and Their

Correlation with Histone Modifications

(A) KB cells were stimulated with IL-1 for 1 hr or

were left untreated. Then, cytosolic (C), soluble

(N1), and insoluble (N2) nuclear extracts were

prepared and examined for the presence of the

indicated proteins and their phosphorylation

status by immunoblotting using the indicated

antibodies. Numbers underneath the p65 panel

indicate the relative amount of p65 in each fraction

compared to content of total p65 protein in un-

stimulated cells (calculated as the sum of p65 in

C + N1 + N2). Antibodies against b-actin, tubulin,

or phosphorylated RNA Pol II served as controls

for equal loading and purity of the subcellular

fractions. The relative positions of molecular

weight markers are indicated.

(B) ChIP-seq datawere used to calculate the signal

intensities of p65 peaks and to identify 46,345

constitutive p65 peaks (gray boxes) and 1,264 p65

peaks, which were regulated by IL-1 (green

boxes).

(C) Pie charts showing the positions of constitutive

versus IL-1-regulated p65 peaks relative to the

transcriptional start sites (TSSs) of the next anno-

tated protein-coding genes.

(D) ChIP-seq data were used to calculate the

overlap signals of constitutive versus IL-1-regu-

lated p65 peaks with the indicated histone modi-

fications.

See Table S3 for statistics for Figures 2B and 2D.

See also Figure S2.

ulation within the group of constitutive

p65 peaks (Figure 2D, gray boxes).

However, IL-1-inducible peaks showed

reduced H3K9me3 levels independent of

IL-1 and an increase of H3K9ac only after

IL-1 stimulation (Figure 2D, green boxes).

In contrast, across all IL-1-inducible p65

peaks, median H3K4me1 and H3K27ac levels were elevated,

whereby H3K4me1 was not regulated by IL-1 and H3K27ac

further increased after cytokine treatment (Figure 2D, green

bars). These data suggest that the about 50,000 p65 peaks

found at the genome-wide level are either associated with active

enhancers or lie directly adjacent to active genes. Moreover,

based on their recruitment patterns and the accompanying chro-

matin modifications they can be divided into two distinct groups:

a large, constitutive group of 46,345 peaks and a highly dynam-

ically regulated group of 1,264 p65 binding regions character-

ized by altered basal and IL-1-inducible p65 recruitment

and accompanying histone modifications, suggesting that these

chromatin regions confer specific features of cytokine-mediated

gene regulation.
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Figure 3. Genome-wide Identification of IL-1-Regulated Enhancers

(A) Schematic display of three types of active enhancers identified in KB cells by parallel occurrence of H3K4me1 and H3K27ac marks. The 46 class I and 410

class II enhancers differ by their IL-1-mediated regulation of H3K4me1 or H3K27ac, respectively, and by the additional presence of p65 binding sites.

(B and C) ChIP-seq data were used to calculate the signals for IL-1-regulated enhancers (B) or for the class I and class II enhancers (C). Numbers in brackets

indicate the total number of p65 peaks detected in class I or class II enhancers (C).

(D) The mean regulation of gene expression by IL-1 for all genes and for genes next to the 410 class II enhancers is shown. Data were calculated frommicroarray

data (p = 1.29 3 10�24) and from RNA-seq experiments (p = 1.51 3 10�17).

(E) De novo motif searches and correlation with known motifs for all 410 class II enhancers.

(legend continued on next page)
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Genome-wide Identification of IL-1- and p65-Regulated
Enhancers
Because most p65 peaks were far away from the next gene, we

then thought to further characterize the p65 associated enhancer

repertoire. High-resolution mapping across all conditions (basal

and IL-1-stimulated) revealed 48,133 H3K27ac and 70,225

H3K4me1 peaks. From these data, we derived 35,130 regions

as active enhancers, as defined by the presence of both

H3K27ac and H3K4me1 marks (Figure 3A). IL-1 did not affect

both marks simultaneously but did enhance histone marks

individually. Specifically, we found 468 DNA regions showing

IL-1-inducible H3K4me1 and 1,107 regions showing inducible

H3K27ac (Figures 3A and 3B). Forty-six out of the 468 active en-

hancers were associated with p65 peaks, and we designated

them as regulated class I enhancers (Figures 3A and 3C). Of

the 1,107 enhancers, 410 were associated with 469 p65 peaks

andwere called class II enhancers (Figures 3A and 3C). The class

II enhancers showed low basal but highly IL-1-inducible p65

recruitment and thus most closely resembled the enhancer re-

gions associated with the chemokine cluster shown in Figure 1

(Figure 3C). We therefore focused all further analysis on this

subgroup of 410 IL-1-responsive enhancers. Compared to all ex-

pressed genes within the data set, the genes next to class II en-

hancers were regulated by IL-1 as assessed from our microarray

and RNA-seq data sets (Figure 3D). Motif searches revealed that

class II enhancerswere enriched for binding sites for NF-kB, Elf3/

5, FEV, STAT3, SPI1, Jundm2, GCN4, and Fos (Figure 3E). Meta-

profiles of the class II enhancers showed that basal and inducible

H3K27ac was strongly enriched and was peaking symmetrically

at regions immediately adjacent to inducible p65 binding sites

(Figure 3F). Regions of p65 binding showed dips of H3K27ac

and H3K4me1 marks, indicating the reduction in nucleosome

density after p65 recruitment (Figure 3F). H3K27ac enhancer

marks covered larger genomic regions after IL-1 stimulation,

either due to reduced chromatin compaction or to increased

spreading of histone modifications. In unstimulated cells the

410 class II enhancers extended from 400 to 1,500 bp (median

of 644 bp), whereas IL-1 stimulation resulted in a further increase

in median enhancer width to 1,109 bp (Figure 3G). Collectively,

the data shown in Figures 2 and 3 identify a class of several hun-

dred cytokine-inducible enhancers that are located upstream

of the majority of all IL-1-regulated genes. Moreover, the data

suggest that p65, in addition to its classical role in activating

promoter-dependent transcription, plays a prominent role in

the formation or regulation of these enhancer structures.

Genome-wide Regulation of IL-1-Inducible Enhancers
by a TAK1-IKK2-Dependent Pathway
To identify the upstream signals involved in gene- and enhancer-

specific recruitment of p65 NF-kB, a central part of the IL-1-

triggered signals was blocked by the cell-permeable ATP-

competitive kinase inhibitor 5Z-7-oxozeaenol. This compound

covalently binds to C174 within the ATP-binding pocket of

TAK1, allowing fast inhibition of TAK1 enzymatic activity in

cultured cells (Wu et al., 2013). 5Z-7-oxozeaenol blocked the

vast majority of IL-1-inducible genes (Figure S3A; Table S2).

The inhibitory effect on gene expression was almost complete,

as exemplified by heatmaps of the top-ranking IL-1-regulated

genes (Figure S3B) and shown in Table S2. At the global chro-

matin level, 5Z-7-oxozeaenol affected only the recruitment of

the IL-1-inducible group, but not the constitutive group of p65

peaks (Figure S3C). In line with this result, 5Z-7-oxozeaenol sup-

pressed IL-1-inducible IkBa phosphorylation as well as the

inducible p65 nuclear translocation and S536 phosphorylation

(Figures S4A and S4B, top). Accordingly, 5Z-7-oxozeaenol

completely inhibited IL-1-inducible IL8 and CXCL2 mRNA

expression, demonstrating the relevance of the TAK1 pathway

for the regulation of the CXC chemokine locus (Figure S4C).

Additionally, TAK1 controls further MAPK signaling. Thus, 5Z-

7-oxozeaenol also suppressed inducible phosphorylation of

JNK, p38, and c-Jun and the expression of c-Jun and c-Fos in

a dose- and time-dependent manner (Figures S4D and S4E). Un-

der these conditions, little effect of 5Z-7-oxozeaenol was seen

on protein levels of ATF2, JunD, and JunB (Figures S4D and

S4E). 5Z-7-oxozeaenol also inhibited autophosphorylation of

TAK1 (Figures S4D and S4E), further indicating its specificity

and suitability for suppression of TAK1-mediated signaling in hu-

man KB cells. ChIP-seq profiles illustrate that 5Z-7-oxozeaenol

suppressed IL-1-inducible p65 recruitment, Pol II loading, and

Pol II S5 phosphorylation and H3K27ac at all regions of the IL8

and CXCL2 loci, whereas no effects on H3K4me1 were seen

(Figure 4A). Moreover, 5Z-7-oxozeaenol inhibited IL-1-inducible

p65 recruitment and H3K27ac across the 410 class II enhancers

but had no effect on all 35,130 enhancers (Figure 4B). Because

TAK1 is an upstream regulator of IKK2 (Zhang et al., 2014), it

was interesting to test the consequences of IKK2 inhibition for

IL-1-induced global p65-dependent enhancer activation. The

specific IKK2 inhibitor PHA-408 (Mbalaviele et al., 2009) inhibited

IL-1-inducible IkBa phosphorylation and IL8 and CXCL2 mRNA

induction in both HeLa cells (data not shown) and KB cells (Fig-

ure 4C). Similar to 5Z-7-oxozeaenol, the compound inhibited

inducible phosphorylation and nuclear translocation of p65 (Fig-

ures S4A and S4B, bottom). Under these conditions, PHA-408

suppressed inducible H3K27ac across the 410 class enhancers

(Figure 4D). Collectively, these data therefore suggest that a

TAK1-IKK2 pathway plays a direct and specific role in IL-1-

inducible enhancer activation.

Identification of p65 as a Cytokine-Inducible Priming
Factor for Enhancer Activation Downstream of TAK1
and IKK2
These results raised the question whether, downstream of

TAK1 and IKK2, p65 recruitment was a cause or consequence

of enhancer activation. Small hairpin RNA (shRNA)-mediated

depletion of p65 in HeLa cells, which are closely related to KB

cells, prevented IL-1-induced expression of IL8 and CXCL2, the

(F) p65 peaks of all 410 class II enhancers were centered and meta-profiles for H3K27ac and H3K4me1 were compiled from IL-1-treated cells or from untreated

cells across 8 kb of adjacent genomic sequences.

(G) The distribution of enhancer widths of untreated and IL-1-induced class II enhancers was calculated (p = 0.002).

See Table S3 for statistics for Figures 3B and 3C.
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two genes flanking the chemokine cluster on chromosome4 (Fig-

ure 5A). Based on theChIP-seqprofiles,we thendesignedprimer

pairs to accurately cover the IL8 and CXCL2 flanking enhancers

and promoters as well as negative control regions of both genes

as shown schematically in Figure 5B. Three enhancer primer

pairs per gene were used to detect the p65 peak or the adjacent

Figure 4. The Activation of IL-1-Regulated

Enhancers Is TAK1 and IKK2 Dependent

(A) KB cells were left untreated or were treated for

30 min with the TAK1 inhibitor 5Z-7-oxozeaenol

(5Z, 1 mM), with IL-1 for 1 hr or with 5Z-7-ox-

ozeaenol followed by IL-1 (IL-1 + 5Z). Then

ChIP-seq experiments were performed using the

antibodies shown in Figure 1. Profiles for the IL8

and CXCL2 loci are shown; yellow colors indicate

samples from cells treated with 5Z-7-oxozeaenol.

The presence of NF-kB motifs is indicated by

vertical lines underneath the p65 panels. Gray or

blue bars indicate genomic areas comprising

H3K4me1 and H3K27ac-positive enhancers or

class II enhancers, respectively.

(B) The mean signal intensities of p65 binding and

histone modifications for all 35,130 enhancers

versus all 410 class II enhancers were calculated

for all conditions described in (A).

(C) KB cells were treated for the indicated times

with the IKK2 inhibitor PHA-408 (5 mM) or with IL-1

in the indicated combinations. Top: the suppres-

sive effects of PHA-408 on IKK activity and IkBa

breakdown were assessed by immunoblotting of

whole-cell extracts using antibodies against the

phosphorylated and unphosphorylated forms of

IkBa. b-actin amounts were determined to control

for equal loading. Bottom: in parallel, cells were

treated with IL-1 for 1 hr or with PHA-408 (5 mM) as

indicated and mRNA expression of IL8 or CXCL2

was quantified by RT-qPCR. Shown is the mean

fold regulation ± SEM from three independent

experiments.

(D) KB cells were treated with vehicle (�, DMSO),

IL-1 for 1 hr, or PHA-408 (PH, 5 mM) or combina-

tions of IL-1 and PHA-408 as indicated, and ChIP-

seq experiments were performed and analyzed as

described in (B) using antibodies against H3K27ac.

See Table S3 for statistics for Figures 4B and 4D.

See also Figures S3 and S4 and Table S2.

maximaofH3K27acorH3K4me1.Quanti-

tative ChIP-PCR experiments were per-

formed to determine p65 recruitment,

deposition of constitutive and IL-1-induc-

ible H3K27ac and H3K4me1 histone

marks, histone H3 density, and Pol II

recruitment at the enhancers and pro-

moters of IL8 and CXCL2 (Figure 5C,

top). Depletion of p65 not only resulted in

the absence of enhancer and promoter

recruitment of this factor, but also pre-

vented RNA Pol II loading (Figure 5C,

top). Moreover, basal and IL-1-inducible

H3K27 acetylation was strongly impaired

in the absence of p65, whereas H3K4me1 remained largely un-

changed (Figure 5C, top). IL-1 treatment also resulted in a reduc-

tion of H3 density at the IL8 and CXCL2 promoters, which is an

indication of reduced chromatin compaction (Figure 5C, top).

Suppression of p65 counteracted IL-1 triggered chromatin de-

compaction (Figure 5C, top), indicating that p65 is controlling
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not only histonemodifications, but also nucleosome density. The

relevance of p65 for inducible H3K27ac was also seen for other

arbitrarily selected class II enhancers (Figures S5A and S5B),

showing the general contribution of this transcription factor for

IL-1-regulated H3K27ac. By qPCR, the importance of IKK2 and

TAK1 for IL-1-induced p65 recruitment and H3K27ac at the IL8

and CXCL2 loci was also revealed in KB cells pretreated either

with PHA-408 (Figure 5C, bottom) or 5Z-7-oxozeaenol

Figure 5. Essential Role of the NF-kB p65 Pathway in Enhancer Acetylation and Transcription of CXC Chemokine Genes

(A) HeLa cells were transfected with a plasmid vector directing the expression of a shRNA targeting p65 (shp65) or with empty pSuper-Puro. After 2 day selection

in puromycin, cells were stimulated with IL-1 for 1 hr or were left untreated. Protein expression of p65 was examined by immunoblots (top) andmRNA expression

of IL8, CXCL2, and RELA (p65) by RT-qPCR (bottom). Shown are mean fold changes ±SEM from two independent experiments performed in duplicates.

(B) Zoomed-in ChIP-seq profiles for IL-1 regulated chromatinmodifications at H3K27ac andH3K4me1 aswell as for p65 binding of the IL8 andCXCL2 loci. NF-kB

motifs, enhancer regions, and class II enhancers are shown by vertical lines or gray or blue bars, respectively. Numbers 1–10 and black bars indicate six enhancer

regions, two promoter regions, and two negative control regions, which were analyzed in detail by subsequent quantitative ChIP-PCRs.

(C) Top: vector-transfected or p65 knockdown cells were stimulated for 1 hr with IL-1 or were left untreated. ChIP experiments across the enhancers (primer pairs,

1, 2, 3 for IL8 and 8, 9, 10 forCXCL2) or promoters (primer pairs 5 and 6) or negative control regions (primer pairs 4 and 7) as shown in (B) were performed using the

indicated antibodies. Bottom: the same analysis was performed using chromatin from KB cells treated with vehicle (DMSO), PHA-408 (5 mM), or IL-1 (1 hr) in the

indicated combinations. Shown are the mean values (% input) ±SEM from at least two independent experiments performed in duplicates.

See also Figures S4, S5, and S6.
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(Figure S6A). The critical contribution of TAK1 to inducible p65

binding, H3K27ac, and chemokine gene expression was

confirmed in an independent experimental approach after

shRNA-mediated downregulation of TAK1 expression (Figures

S6B and S6C). Collectively, the results displayed in Figures 4

and 5 show how the TAK1-IKK2-p65 pathway relays cytosolic

signals to chromatin modifications in order to mediate coordi-

nated enhancer and promoter activation of IL-1 target genes.

Figure 6. Kinetics and TAK1-Dependent Recruitment of p65 and AP-1 Factors to IL-1-Inducible Enhancers and Promoters

(A and B) KB cells were stimulated for the indicated times with IL-1 or were left untreated. ChIP-PCR experiments were performed using the indicated antibodies

with primers covering the promoter or enhancer regions of the IL8 locus (A) or the CXCL2 locus (B) as schematically shown in Figure 5B.

(C and D) KB cells were treated for 30 min with the TAK1 inhibitor 5Z-7-oxozeaenol (1 mM) or with IL-1 for 1 hr at the indicated combinations. ChIP experiments

were performed as in (A) and (B). The bars show the mean enrichment (% input) ±SEM from at least two experiments performed in duplicates.

See also Figures S4 and S7.
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The TAK1-p65 Pathway Primes and Coordinates
Recruitment of Additional Factors at IL-1-Inducible
Enhancers and Promoters
We then thought to unravel the kinetics of proteins assembling in

addition to p65 at enhancers and promoters of the IL8 and

CXCL2 loci downstream of TAK1 in more detail. We determined

the recruitment kinetics of the TFs c-Fos, JunD, c-Jun, ATF2,

and FRA1 that are known to recognize AP-1 sites as those found

by the motif searches and of the histone acetyl transferase

cofactor CBP. Several of these factors had already been impli-

cated in IL8 or CXCL2 gene regulation (Hoffmann et al., 2005).

All TFs and CBP bound to IL8 and CXCL2 at promoters but

also to the enhancers (Figures 6A and 6B). These recruitments

were specific according to the low signals in immunoglobulin G

controls (Figures 6A and 6B) and to lack of binding of any of these

factors to the negative control region upstream of the IL8 pro-

moter (Figures S7A and S7B), which as shown in Figure 5B lacks

H3K27ac and H3K4me1 histone modifications. According to

their kinetics of recruitment, we assigned these factors to three

groups. Group 1 comprises p65, c-Fos, and CBP, because

they showed no significant constitutive binding, a peak of

recruitment at 1 hr, and an almost complete removal from pro-

moters and enhancers after 6 hr of stimulation (Figures 6A and

6B). Group 2 consists of JunD and c-Jun, which showed consti-

tutive binding that was increased after 1 hr of IL-1 treatment and

incomplete removal from chromatin at later time points (Figures

6A and 6B). Group 3 contains ATF2 and FRA1, which showed

constitutive binding that was further increased with a delayed

kinetics at 3 hr of stimulation and also incomplete removal from

promoters and enhancers after prolonged IL-1 stimulation (Fig-

ures 6A and 6B). Additional experiments showed that P(S5)-Pol

II binding most closely mirrored the sharp recruitment profile of

p65 and occurred only at IL8 and CXCL2 promoters but not at

the enhancers (Figures 6A and 6B). Interestingly, p65 recruitment

was already detectable between 10 and 20min at IL8 andCXCL2

promoters and occurred with a delay at both chemokine en-

hancers (Figures 6A and 6B). In contrast, there was no difference

in the kinetics of p65 removal from the IL8 andCXCL2promoters/

enhancers (Figures 6A and 6B). Although this effect is relatively

small, this observation would be consistent with a model where

p65 binds first to the promoter regions of both chemokine loci

and subsequently coordinates additional formation of the pro-

moter/enhancer platforms, perhaps by CBP-mediated progres-

sive acetylation at H3K27. Then, we asked which of these events

were under control of TAK1. As shown in Figures 6C and 6D, 5Z-

7-oxozeaenol blocked in all cases the IL-1-inducible recruitment

of p65 and AP-1 factors and had little if any effect on constitutive

chromatin binding of these transcription factors. To investigate a

possible role of p65 for IL-1-triggered recruitment of AP-1 family

members, p65 knockdown cells were used. Between 15 and

60 min of IL-1-stimulation, p65 knockdown did not affect activa-

tion of p38, JNK, or the total expression levels of c-Fos and JunD,

two AP-1 proteins that bind to promoters and enhancers of IL8

andCXCL2 loci in KB and HeLa cells (Figure 7A). Like in KB cells,

c-Fos protein expression and chromatin loading was highly IL-1-

inducible,whereas theconstitutively expressedJunDprotein dis-

played basal but also IL-1-inducible recruitment to the IL8 and

CXCL2 loci (Figures 7A and 7B). Knockdown of p65 prevented

the inducible recruitment of c-Fos, JunD, CBP, and P(S5)-Pol II

to the IL8 and CXCL2 loci (Figure 7B). In addition, interference

with p65 expression also resulted in impaired recruitment of its

heterodimeric partner p50 NF-kB (Figure 7B). In contrast, knock-

down of c-Fos or JunD, which was sufficient to suppress their

own chromatin recruitment had no effect on inducible p65 bind-

ing (Figure S7C), thus identifying p65 as a master transcription

factor of inflammatory enhancer activation. Furthermore, knock-

down of c-Fos or JunD resulted only in slightly impaired IL-1-

induced expression of IL8 or CXCL2 mRNAs (Figure 7C). These

data indicate that p65 is essential for the assembly of

TF collectives andadditional cofactors at both promoters and en-

hancers. The data obtained by the quantitative ChIP-PCR

analyses of the IL8 andCXCL2 genomic loci in the various knock-

down cells or in cells treated with kinase inhibitors were then

normalized and integrated to obtain a comprehensive view on

the IL-1-triggered signaling events at the chromatin level.

These summarizing analyses corroborate the conclusion that

IL-1-inducible H3K27ac is primarily regulated through the

TAK1-IKK2-p65 pathway, whereas AP-1 proteins such as c-

Fos and JunD have little effect (Figures 7D and 7E). Altogether,

these data reveal the fundamental role of the TAK1-IKK2-p65

pathway in orchestrating the assembly of promoter and enhancer

complexes and the accompanying H3K27ac modifications for

driving maximal mRNA expression of IL-1-induced genes.

DISCUSSION

Sterile, cytokine-driven inflammation is the underlying cause of

numerous diseases such as rheumatoid arthritis, psoriasis, or

gout (Chen and Nuñez, 2010). It has long been known that de-

regulated gene expression is a hallmark of all inflammatory pro-

cesses (Bhatt et al., 2012; Medzhitov and Horng, 2009; Hao and

Baltimore, 2009). The receptors and cytosolic pathways orches-

trating inflammatory gene expression have been studied in

considerable detail (Gaestel et al., 2009). However, how these

pathways transduce their information to chromatin is not well

understood.

Here, we identify a large number of IL-1-inducible enhancers

and their signal-mediated regulation in epithelial cells. The start-

ing point of our study was the discovery of two enhancer regions

flanking a cluster of four highly regulatedCXC chemokine genes.

In accordance with concurrent studies, we classified these en-

hancers as active genomic regions due to the simultaneous

occurrence of H3K4me1 and H3K27ac marks and to the pres-

ence of CBP (Calo and Wysocka, 2013). However, there were

also specific features, in particular, the further, IL-1-dependent

upregulation of H3K27ac but not H3K4me1 and the rapid, regu-

lated recruitment of the p65 NF-kB subunit. At the genome-wide

level, we report more than 45,000 mostly intergenic p65 binding

sites. So far, p65 binding events have been mapped in several

other cell types in response to TNF-a or LPS. Using lower reso-

lution ChIP-Chip or ChIP-Pet techniques, 348 or 489 promoter-

near p65 sites and 209 sites distributed at intergenic regions

across chromosome 22 were reported (Lim et al., 2007;

Schreiber et al., 2006; Martone et al., 2003). In more recent

deep sequencing studies, the numbers of p65 peaks ranged

from 12,250 (dendritic cells) to 20,733 (A549 cells) (Jin et al.,
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Figure 7. p65 Is Required for Recruitment of AP-1 Factors to Enhancers and Promoters

(A–C) HeLa cells were transfected with plasmids directing the expression of shRNAs targeting p65 (shp65), JunD (shJunD), c-Fos (shFos), or with empty pSuper-

Puro (vector) as indicated. After 2 day selection in puromycin, cells were stimulated with IL-1 for 1 hr or were left untreated. (A) Activation of NF-kB, JNK, and p38

(legend continued on next page)
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2013; Yang et al., 2013; Xing et al., 2013; Garber et al., 2012; Jin

et al., 2011; Kasowski et al., 2010). Collectively, these data

confirm initial estimates that occupied p65 NF-kB sites are within

a range of four orders of magnitude (Natoli et al., 2005). Thus, in

these conditions less than 20% of the 300,000 kB consensus

motifs in the human genome are occupied by p65 (Jin et al.,

2011). Our study describes one of the largest arrays of p65 sites

currently available. The majority of p65 binding events occur

constitutively in line with various studies reporting constitutively

occurring nuclear p65 protein (Adli and Baldwin, 2006; Nelson

et al., 2004; Birbach et al., 2002). Accordingly, a recent study

mapped >20,000 constitutive and mainly intergenic p65 peaks

in transformed B cells (Zhao et al., 2014). Our subcellular frac-

tionation and high-resolution mapping experiments indicate

that most of the nuclear p65 protein is contained within the sol-

uble fraction and only small amounts are stably associated with

chromatin. These observations indicate that not only the nuclear

entry of p65 is a regulated event, but also the balance between

free nuclear versus chromatin-associated p65. These mecha-

nisms are likely to be locus specific and accordingly the p65 pro-

tein resides at constitutively occupied and IL-1-induced sites.

The majority of p65 binding events occur at intergenic regions

devoid of RNA polymerase II because two-thirds of 1,264 IL-1-

regulated p65 peaks were localized >20 kb upstream of the

next annotated gene. By combining these data with further

ChIP-seq and mRNA expression analyses, we identified 410

enhancers, which were regulated by IL-1 at the level of p65

recruitment, H3K27 acetylation, enhancer width, and mRNA

expression of neighboring genes. Thus, the genome-wide results

resemble all of the features of the CXC chemokine cluster shown

in Figure 1 and suggest that this group of enhancers has general

relevance for IL-1-mediated gene regulation. Enhancers that

display TNF-a-inducible H3K27ac have also been noted recently

in fibroblasts, and it will be interesting to analyze if they overlap

with class II enhancers described in our study (Jin et al., 2013).

Because the correlation of enhancer marks with p65 occupancy

does not prove the functional relevance of the enhancer struc-

tures for gene expression, we used kinase inhibitor and p65

knockdown experiments to reveal an essential role for the p65

subunit in enhancer activation and subsequent mRNA transcrip-

tion at the CXC locus. These data provide strong evidence for

p65 as a master regulator of IL-1-inducible H3K27ac. Occur-

rence of H3K4me1 was independent of p65, suggesting that

IL-1-regulated signaling pathways recognize genomic regions

that are already premarked as enhancers.

Themolecular events connecting cytosolic signaling pathways

with enhancer regulation are still incompletely understood (Calo

and Wysocka, 2013; Pennacchio et al., 2013). Here, we identify

the kinase TAK1 and its downstream kinase IKK2 as important

regulators allowing cytokine-triggered chromatin modification.

TAK1 and also IKK2 are essential components of the canonical

NF-kB pathway (Häcker and Karin, 2006). Inhibition of TAK1

or IKK2 kinase activities with specific small molecule inhibitors

suppressed IL-1-induced p65 recruitment and H3K27ac at class

II enhancers and accordingly also the IL-1-gene response. In-

depth quantitative ChIP-PCR analyses of theCXC loci confirmed

the genome-wide data and together with the p65 knockdown

effects on enhancer acetylation place a TAK1-IKK2-p65 pathway

at the center of signal-mediated enhancer acetylation.

However, TAK1 inhibition will also interfere with IL-1-triggered

MAPK signaling (Ninomiya-Tsuji et al., 1999). At the level of chro-

matin, 5Z-7-oxozeaenol impaired the IL-1-inducible and (to a

lesser extent) the basal enhancer recruitment of c-Jun, JunD,

JunB, ATF2, c-Fos, and FRA1 to theCXC chemokine locus. These

data define a transcription factor collective that employs TAK1-

derived signals to assemble at inflammatory enhancers. Motif

searches within IL-1-inducible class II enhancers suggest that

they are enriched for NF-kB and AP-1 sites, whereby themotif ar-

rangements; i.e., their relative order, orientation, and spacing, are

relatively flexible (M.K. and M.B., unpublished data). Our experi-

ments identify p65 as an essential component governing further

TFbinding events to theseciselements, because its absencepre-

cludes c-Fos and JunD binding as well as CBP recruitment and

H3K27 acetylation. In contrast, suppression of JunD and c-Fos

expression had little effect on p65-mediated enhancer activation,

thus identifying a hierarchy among the transcription factors.

Because AP-1 subunits do not serve as pioneering transcription

factors, they presumably exert further functions such as the reso-

lution of enhancer activation or shaping the kinetics of IL-1-medi-

ated gene expression. Thus, the relative contribution of the indi-

vidual AP-1 subunits downstream of TAK1 to enhancer activity

and downstream gene activation remains to be determined.

These results raise the question on the mechanisms employed

by the enhancer complexes to support inflammatory gene

MAPK pathways or expression of NF-kB subunits or AP-1 proteins was analyzed in p65 knockdown or control cells stimulated for various times with IL-1 by

immunoblotting of whole-cell extracts using the indicated antibodies. Equal loading was confirmed using antibodies against tubulin. Shown is one out of three

experiments. (B) Control cells or p65 knockdown cells (shp65) were stimulated for 1 hr with IL-1 or were left untreated. ChIP-PCR experiments were performed

using the indicated antibodies with primers covering the promoter or enhancer regions of the IL8 locus (top) or theCXCL2 locus (bottom) as schematically shown

in Figure 5B. The bars show themean enrichment (% input) ±SEM from at least two experiments performed in duplicates. (C) c-Fos or JunD knockdown or control

cells were stimulated with IL-1 for 1 hr or were left untreated. Knockdowns were validated by immunoblotting (top) and mRNA expression of IL8 or CXCL2 was

determined by RT-qPCR (bottom). Shown are mean fold changes ± SEM from three (JunD) or two (c-Fos) independent experiments performed in duplicates.

(D) ChIP-PCR data covering the IL8 and CXCL2 enhancer and promoter regions from all HeLa cell knockdown experiments (Figures 5C, S6C, and S7C) were

pooled, measurements of H3K27ac and H3K4me1 were normalized to H3 levels, and IL-1-regulated changes were calculated as fold changes relative to vector-

transfected control cells. One data point for the CXCL2 locus shown in Figure S7C (shFos ChIP-PCR 3) was omitted due to very low H3 signals, which resulted in

misleadingly high ratio values. Shown are themean changes ±SEM from ten (vector controls), three (shTAK1 and shJunD), or two (shp65 and shFos) independent

experiments.

(E) Changes in H3 modifications were calculated as in (D) for all experiments using TAK1 (5Z) or IKK2 (PHA-408) inhibitors in KB cells as shown in Figure 5C

(bottom) and in Figure S6A. Shown are the mean changes ± SEM from combining four independent experiments for controls and two experiments for each

inhibitor.

See also Figure S7.
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expression. Some enhancers transcribe regulatory RNAs that

promote transcription from downstream protein-coding genes

(Li et al., 2013; Simonatto et al., 2013). However, based on

RNA-seq we did not detect RNA at the enhancers, and we also

found only spurious amounts of RNA Pol II associated with the

IL8 and CXCL2 enhancers. The enhancers of these two genes

are located more than 400 kb apart, and their function might be

to promote physical interactions by chromatin loopings. They

may extend to the promoter regions of individual genes within

the cluster, as suggested by the observation that the NF-kB

and AP-1 TF collective is also found at the IL8 and CXCL2 pro-

moters. Additionally, they may contact regions on other chromo-

somes to form regulatory enhancer archipelagosbymultiple long-

range chromatin interactions (Spitz and Furlong, 2012; Montavon

et al., 2011). Such inflammatory enhancer landscapesmay syner-

gize to provide the very robust and synchronized expression of

canonical inflammatory genes as shown in Figure S1. Indeed, a

recent study identified over a million long-range chromatin inter-

actions at 5–10 kb resolution in TNF-stimulated cells (Jin et al.,

2013). Thus, our data provide important clues for further studies

directed toward the identification of signals that determine the

3D architecture of chromatin during IL-1-driven inflammation.

In summary, we report a time-dependent IL-1-inducible for-

mation of enhancers, which can be viewed as an epigenetic

amplifying or feedforward mechanism by which cells achieve

the particularly strong and rapid gene expression responses

that are typically observed in cytokine-stimulated cells. In the

future, it will therefore be interesting to examine possible poly-

morphisms within the DNA-binding motifs or in the TF collective

that we have identified within the enhancer peaks and subse-

quent alterations in the enhancer architecture. These changes

could also account for chronically ongoing expression of proin-

flammatory genes in inflammatory diseases.

EXPERIMENTAL PROCEDURES

Cell Lines and Materials

HeLa and KB human epithelial carcinoma cell lines have been described

(Handschick et al., 2014; Hoffmann et al., 2005). Recombinant human IL-1a

was used at 10 ng/ml in all experiments. 5Z-7-oxozeaenol was from Tocris

Bioscience; PHA-408 was from Axon Medchem.

Plasmids and Transfections of Cell Lines

shRNA constructs for p65 (Handschick et al., 2014), JunD, c-Fos, and TAK1

were prepared in pSuper-Puro or pLKO.1 (shTAK1) backbones. HeLa cells

were transiently transfected by the calcium phosphate method and were

selected for 48–96 hr with 1 mg/ml puromycin.

Cell Lysis and Immunodetection of Proteins

Whole-cell extracts, cytosolic, soluble nuclear, and insoluble nuclear extracts

were prepared and used for immunoblotting as described (Handschick et al.,

2014).

Gene Expression Measurements

All mRNAmeasurements were performed by RT-qPCR, by Agilent microarrays

or by RNA-seq with total RNA as described (Handschick et al., 2014).

Chromatin Immunoprecipitation and PCR

ChIPwas performed from formaldehyde crosslinked cells, andDNAwas quan-

tified by real-time PCR with SYBR Green as described previously in detail

(Handschick et al., 2014).

Deep Sequencing of Nucleic Acids

Sequencing libraries were prepared and analyzed using Illumina reagents and

an Illumina HiSeq2500 machine.

ChIP-Seq, RNA-Seq, andMicroarray Analyses andData Visualization

Conversion and alignment of ChIP-seq and RNA-seq reads to the hg19 refer-

ence genome followed standard procedures. Visualization of binding profiles,

enhancer analyses, motif searches, and data analyses of microarray experi-

ments are described in the Supplemental Information. Statistics for all meta-

analyses were calculated using the Wilcoxon signed rank test. In all box plots,

black lines indicate medians, boxes the lower and upper quartiles (25% and

75%), and whiskers the minimum and maximum values.

ACCESSION NUMBERS

Microarray, RNA-seq, and ChIP-seq data have been deposited in the NCBI

GEO under accession number GSE64224. All ChIP-seq experiments were per-

formed from cell-culture samples generated in parallel, but selected H3K9ac,

Pol II, and p65 ChIP-seq data from untreated and IL-1-treated KB cells have

been previously published, and the data sets have been deposited to the

GEO under accession number GSE52470.
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Häcker, H., and Karin, M. (2006). Regulation and function of IKK and IKK-

related kinases. Sci. STKE 2006, re13.

Handschick, K., Beuerlein, K., Jurida, L., Bartkuhn, M., Müller, H., Soelch, J.,

Weber, A., Dittrich-Breiholz, O., Schneider, H., Scharfe, M., et al. (2014). Cy-

clin-dependent kinase 6 is a chromatin-bound cofactor for NF-kB-dependent

gene expression. Mol. Cell 53, 193–208.

Hao, S., and Baltimore, D. (2009). The stability of mRNA influences the tempo-

ral order of the induction of genes encoding inflammatory molecules. Nat.

Immunol. 10, 281–288.

Hayden, M.S., and Ghosh, S. (2008). Shared principles in NF-kappaB

signaling. Cell 132, 344–362.

Hoffmann, E., Thiefes, A., Buhrow, D., Dittrich-Breiholz, O., Schneider, H.,

Resch, K., and Kracht, M. (2005). MEK1-dependent delayed expression of

Fos-related antigen-1 counteracts c-Fos and p65 NF-kappaB-mediated inter-

leukin-8 transcription in response to cytokines or growth factors. J. Biol.

Chem. 280, 9706–9718.

Jin, F., Li, Y., Ren, B., and Natarajan, R. (2011). PU.1 and C/EBP(alpha)

synergistically program distinct response to NF-kappaB activation through

establishing monocyte specific enhancers. Proc. Natl. Acad. Sci. USA 108,

5290–5295.

Jin, F., Li, Y., Dixon, J.R., Selvaraj, S., Ye, Z., Lee, A.Y., Yen, C.A., Schmitt,

A.D., Espinoza, C.A., and Ren, B. (2013). A high-resolution map of the three-

dimensional chromatin interactome in human cells. Nature 503, 290–294.

Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Was-

zak, S.M., Habegger, L., Rozowsky, J., Shi, M., Urban, A.E., et al. (2010). Vari-

ation in transcription factor binding among humans. Science 328, 232–235.

Li, W., Notani, D., Ma, Q., Tanasa, B., Nunez, E., Chen, A.Y., Merkurjev,

D., Zhang, J., Ohgi, K., Song, X., et al. (2013). Functional roles of

enhancer RNAs for oestrogen-dependent transcriptional activation. Nature

498, 516–520.

Lim, C.A., Yao, F., Wong, J.J., George, J., Xu, H., Chiu, K.P., Sung, W.K., Lip-

ovich, L., Vega, V.B., Chen, J., et al. (2007). Genome-wide mapping of

RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by

NF-kappaB upon TLR4 activation. Mol. Cell 27, 622–635.

Martone, R., Euskirchen, G., Bertone, P., Hartman, S., Royce, T.E., Luscombe,

N.M., Rinn, J.L., Nelson, F.K., Miller, P., Gerstein, M., et al. (2003). Distribution

of NF-kappaB-binding sites across human chromosome 22. Proc. Natl. Acad.

Sci. USA 100, 12247–12252.

Mbalaviele, G., Sommers, C.D., Bonar, S.L., Mathialagan, S., Schindler, J.F.,

Guzova, J.A., Shaffer, A.F., Melton, M.A., Christine, L.J., Tripp, C.S., et al.

(2009). A novel, highly selective, tight binding IkappaB kinase-2 (IKK-2)

inhibitor: a tool to correlate IKK-2 activity to the fate and functions of the com-

ponents of the nuclear factor-kappaB pathway in arthritis-relevant cells and

animal models. J. Pharmacol. Exp. Ther. 329, 14–25.

Medzhitov, R., and Horng, T. (2009). Transcriptional control of the inflamma-

tory response. Nat. Rev. Immunol. 9, 692–703.

Montavon, T., Soshnikova, N., Mascrez, B., Joye, E., Thevenet, L., Splinter, E.,

de Laat, W., Spitz, F., and Duboule, D. (2011). A regulatory archipelago con-

trols Hox genes transcription in digits. Cell 147, 1132–1145.

Natoli, G., Saccani, S., Bosisio, D., and Marazzi, I. (2005). Interactions of NF-

kappaB with chromatin: the art of being at the right place at the right time.

Nat. Immunol. 6, 439–445.

Nelson, D.E., Ihekwaba, A.E., Elliott, M., Johnson, J.R., Gibney, C.A.,

Foreman, B.E., Nelson, G., See, V., Horton, C.A., Spiller, D.G., et al. (2004). Os-

cillations in NF-kappaB signaling control the dynamics of gene expression.

Science 306, 704–708.

Ninomiya-Tsuji, J., Kishimoto, K., Hiyama, A., Inoue, J., Cao, Z., and Matsu-

moto, K. (1999). The kinase TAK1 can activate the NIK-I kappaB as well as

the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256.

Ostuni, R., Piccolo, V., Barozzi, I., Polletti, S., Termanini, A., Bonifacio, S., Cu-

rina, A., Prosperini, E., Ghisletti, S., and Natoli, G. (2013). Latent enhancers

activated by stimulation in differentiated cells. Cell 152, 157–171.

Pennacchio, L.A., Bickmore, W., Dean, A., Nobrega, M.A., and Bejerano, G.

(2013). Enhancers: five essential questions. Nat. Rev. Genet. 14, 288–295.

Perkins, N.D. (2012). The diverse and complex roles of NF-kB subunits in can-

cer. Nat. Rev. Cancer 12, 121–132.

Sakurai, H. (2012). Targeting of TAK1 in inflammatory disorders and cancer.

Trends Pharmacol. Sci. 33, 522–530.

Sakurai, H., Miyoshi, H., Toriumi, W., and Sugita, T. (1999). Functional interac-

tions of transforming growth factor beta-activated kinase 1 with IkappaB ki-

nases to stimulate NF-kappaB activation. J. Biol. Chem. 274, 10641–10648.

Schmitz,M.L.,Weber, A., Roxlau, T., Gaestel, M., and Kracht, M. (2011). Signal

integration, crosstalk mechanisms and networks in the function of inflamma-

tory cytokines. Biochim. Biophys. Acta 1813, 2165–2175.

Schreiber, J., Jenner, R.G., Murray, H.L., Gerber, G.K., Gifford, D.K., and

Young, R.A. (2006). Coordinated binding of NF-kappaB family members in

the response of human cells to lipopolysaccharide. Proc. Natl. Acad. Sci.

USA 103, 5899–5904.

Shaulian, E., and Karin, M. (2002). AP-1 as a regulator of cell life and death.

Nat. Cell Biol. 4, E131–E136.

Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S., Wagner, U.,

Dixon, J., Lee, L., Lobanenkov, V.V., and Ren, B. (2012). A map of the cis-reg-

ulatory sequences in the mouse genome. Nature 488, 116–120.

Simonatto, M., Barozzi, I., and Natoli, G. (2013). Non-coding transcription at

cis-regulatory elements: computational and experimental approaches.

Methods 63, 66–75.

Spitz, F., and Furlong, E.E. (2012). Transcription factors: from enhancer bind-

ing to developmental control. Nat. Rev. Genet. 13, 613–626.

Weber, A., Wasiliew, P., and Kracht, M. (2010). Interleukin-1 (IL-1) pathway.

Sci. Signal. 3, cm1.

Wu, J., Powell, F., Larsen, N.A., Lai, Z., Byth, K.F., Read, J., Gu, R.F., Roth, M.,

Toader, D., Saeh, J.C., and Chen, H. (2013). Mechanism and in vitro pharma-

cology of TAK1 inhibition by (5Z)-7-Oxozeaenol. ACS Chem. Biol. 8, 643–650.

Xing, Y., Yang, Y., Zhou, F., and Wang, J. (2013). Characterization of genome-

wide binding of NF-kB in TNFa-stimulated HeLa cells. Gene 526, 142–149.

Yang, J., Mitra, A., Dojer, N., Fu, S., Rowicka, M., and Brasier, A.R. (2013). A

probabilistic approach to learn chromatin architecture and accurate inference

of the NF-kB/RelA regulatory network using ChIP-Seq. Nucleic Acids Res. 41,

7240–7259.

Zhang, J., Clark, K., Lawrence, T., Peggie, M.W., and Cohen, P. (2014). An un-

expected twist to the activation of IKKb: TAK1 primes IKKb for activation by

autophosphorylation. Biochem. J. 461, 531–537.

Zhao, B., Barrera, L.A., Ersing, I., Willox, B., Schmidt, S.C., Greenfeld, H.,

Zhou, H., Mollo, S.B., Shi, T.T., Takasaki, K., et al. (2014). The NF-kB genomic

landscape in lymphoblastoid B cells. Cell Rep. 8, 1595–1606.

Zhu, J., Adli, M., Zou, J.Y., Verstappen, G., Coyne, M., Zhang, X., Durham, T.,

Miri, M., Deshpande, V., De Jager, P.L., et al. (2013). Genome-wide chromatin

state transitions associated with developmental and environmental cues. Cell

152, 642–654.

Cell Reports 10, 726–739, February 10, 2015 ª2015 The Authors 739


