This is a postprint of an article published in
Vasilyeva, L.V., Omelchenko, M.V., Berestovskaya, Y.Y., Lysenko, A.M.,
Asticcacaulis benevestitus sp. nov., a psychrotolerant, dimorphic,
prosthecate bacterium from tundra wetland soil
(2006) International Journal of Systematic and Evolutionary Microbiology,
56 (9), pp. 2083-2088.
Asticcacaulis benevestitus sp. nov., a Novel Psychrotolerant Dimorphic Prosthecate Bacterium from Tundra Wetland Soil

Lina V. Vasilyeva¹, Marina V. Omelchenko¹, Yulia Y. Berestovskaya¹, Anatolii M. Lysenko¹, Wolf-Rainer Abraham², Svetlana N. Dedysh¹ and George A. Zavarzin¹

¹S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-lei Octyabrya 7/2, Moscow 117312, Russia
²German Research Centre for Biotechnology, Chemical Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany

Author for correspondence: Svetlana N. Dedysh. Tel: 7 (495) 135 0591. Fax: 7 (495) 135 6530. Email: dedysh@mail.ru

Running title: Asticcacaulis benevestitus, sp. nov.
ABSTRACT

An isolate of Gram-negative, aerobic, heterotrophic, non-pigmented, dimorphic prosthecate bacteria was obtained from tundra wetland soil and designated as strain Z-0023^T. The cells of this strain undergo a dimorphic life cycle and develop a non-adhesive stalk at a site, which is not coincidental with the center of the cell pole, a characteristic typical of representatives of the genus Asticcacaulis. A highly distinctive feature of the cells of strain Z-0023^T is presence of a conical, bell-shaped sheath that appears on cells grown at low temperatures. This prosthecate bacterium is psychrotolerant, moderately acidophilic organism capable of growth between 4 and 28ºC (optimum 15-20ºC) and between pH 4.5 and 8.0 (optimum 5.6-6.0). The major phospholipid fatty acid is 18:1_{ω7c} and the major phospholipids are phosphatidylglycerols. The G+C content of the DNA is 60.4 mol%. On the basis of 16S rRNA gene sequence similarity, strain Z-0023^T is most closely related to Asticcacaulis biprosthecium (98% similarity), Asticcacaulis taihuensis (98%), and Asticcacaulis excentricus (95%). However, low DNA-DNA relatedness to these organisms and a number of distinctive features of the tundra wetland isolate indicated that it represented a novel species of the genus Asticcacaulis, for which the name Asticcacaulis benevestitus sp. nov. is proposed (type strain Z-0023^T = DSM 16100^T = ATCC BAA-896^T).

Keywords: Asticcacaulis benevestitus sp. nov, dimorphic prosthecate bacteria, psychrotolerant microorganisms, microbial communities in tundra.

Abbreviations: DPB – dimorphic prosthecate bacteria.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of Asticcacaulis benevestitus strain Z-0023^T is AM087199.
Dimorphic prosthecate bacteria (DPB) are present in almost any sample of freshwater or seawater and in many types of soils (Henrici, Johnson, 1935; Poindexter, 1964, 1981a, 1999; Nikitin et al., 1966; Belyaev, 1968; Staley, 1968; Staley et al., 1987; Lapteva, 1987). An important characteristic of DPB is their ability to metabolize organic materials available in extremely low quantities and to tolerate a prolonged nutrient scarcity (Larson, Pate, 1975; Poindexter, 1981b; Vasilyeva, Zavarzin, 1995).

DPB are characterized by asymmetric cell reproduction. Each reproductive event in these bacteria produces two siblings: a sessile cell with a cellular stalk (a prostheca) and a motile cell with a polar flagellum. On the basis of the morphology of the reproductive stage (fission or budding), two fundamentally different types of DPB are distinguished: caulobacteria (Caulobacter, Brevundimonas, Maricaulis and Asticcacaulis) and hyphomicrobia (Hyphomicrobium, Pedomicrobium, and Hyphomonas) (Poindexter, 1999; Abraham et al., 1999). Caulobacteria are especially widespread in the environments were nutrient concentrations and ambient temperatures are low (Poindexter, 1981a, 1999; Staley et al., 1987). The taxonomy of caulobacteria has relied primarily upon morphological criteria for a long time. Recently, a polyphasic approach, comprising 16S rDNA sequencing, lipid analysis and NaCl tolerance characterizations, was used to analyze a large set of strains of these bacteria (Abraham et al., 1999; 2001). It has been shown that caulobacteria form two different phylogenetic lineages within the Alphaproteobacteria, one comprising the freshwater and brackish water representatives of the group Caulobacter – Brevundimonas – Asticcacaulis, and the other comprising the marine species of the genus Maricaulis.

All known representatives of the genus Asticcacaulis have been isolated from freshwater samples. Sessile cells of these bacteria develop subpolar or lateral prosthecae, which do not possess adhesive material at their tips. Instead, the cells bear holdfast material directly on their surfaces. To date, this genus comprised three validly described species, Asticcacaulis excentricus (Poindexter, 1964), Asticcacaulis biprosthecium (Pate et al., 1973)
and *Asticcacaulis taihuensis* (Liu et al., 2005). Representatives of the genus *Asticcacaulis* are rarely observed and even more rarely isolated. In this report, we describe a novel species of this genus that has been isolated from tundra wetland peat.

The peat sample was collected from a depth of 3 to 6 cm of a shrub tundra wetland, northeast of Vorkuta in the Polar Ural, Russia (68ºN, 52ºE). 1g of peat was homogenized in 10 ml of sterile water and 1 ml of this suspension was used to inoculate 100 ml of a liquid dilute peptone-yeast extract (PY) medium containing 0.005% peptone and 0.005% yeast extract, pH 6.8, supplemented with 1% (v/v) vitamin stock solution and 2% (v/v) modified Hutner’s basal salts as described by Staley (1968). For enrichment of psychrophilic bacteria, the incubation was carried out for 2 months at 6ºC. The resultant enriched cell suspension was spread-plated onto the surface of the PY medium supplemented with sodium acetate (0.1%, w/v) and solidified with Difco agar (2%, w/v), and the plates were further incubated at 6ºC. As colonies become visible, they were successively re-streaked onto fresh plates with the same agar medium until a culture with uniform colonies was obtained. The isolate, designated Z-0023, was maintained both on agar slants and in liquid cultures using above described PY medium with acetate (PY-A) and PYG medium (0.1% peptone, 0.1% yeast extract, 0.1% glucose, pH 6.7). Cell morphology and cell life cycle, as well as culture purity, were examined using phase-contrast and electron microscopy. In the latter case, the samples were stained with 1% (w/v) uranyl acetate. For preparation of thin sections, cells were collected from agar plates and pre-fixed with 1.5% (w/v) glutaraldehyde in 0.05M cacodylate buffer (pH 6.5) for 1 h at 4ºC and then fixed in 1% (w/v) OsO₄ in the same buffer for 4 h at 20ºC. After dehydration in an ethanol series, the samples were embedded in a Spurr epoxy resin. Thin sections were cut on an LKB-4800 microtome, stained with 3% (w/v) uranyl acetate in 70% (v/v) ethanol. The specimen samples were examined with a JEM-100C transmission electron microscope. Growth of the isolate was monitored by nephelometry at 600 nm for 2-4 weeks in PY-A and PYG liquid media under a variety of
conditions, including temperatures of 4-37°C, pH 4.5-8.3 and NaCl concentrations of 0.1-
5.0% (w/v). Variations in the acidity level were achieved by mixing 0.05M solutions of
Na2HPO4 and KH2PO4 to create media with the same ionic strength. To determine the range
of potential growth substrates of strain Z-0023, the following carbon sources were tested
using liquid PY medium with addition of the respective compounds at a concentration of
0.1% (w/v): D-glucose, L-arabinose, D-ribose, D-xylene, D-galactose, D-fructose, lactose,
D-maltose, sucrose, D-cellulobiose, D-mannose, D-melibiose, raffinose, L-rhamnose, D-
trehalose, D-mannitol, D-sorbitol, starch, acetate, propionate, butyrate, pyruvate, malate,
fumarate, succinate, citrate, methanol, ethanol, propanol, butanol, L-arginine, DL-alanine, L-
phenylalanine, L-glutatate, L-lysine, L-proline, L-hydroxyproline, L-serine, L-tryptophan.
Growth was examined after 8 days of incubation at 20°C. Sensitivity to antibiotics was tested
by spreading 2-day-old cell suspension onto PYG agar medium and applying filter discs
containing the following antibiotics: polymixin M (300 U), benzylpenicillin (10 U),
ristomycin (30 μg), canomycin (30 μg), monomycin (30 μg), tetracyclin (30 μg),
erthromycin (15 μg), streptomycin (30 μg), levomycetin (30 μg). Growth was assessed after
2 days of incubation at 20°C.

For fatty acid analyses, cells of strain Z-0023 were grown on PYG agar plates at 10
and 20°C. Cells were saponified (15 % (w/v) NaOH, 30 min, 100°C), methylated to fatty
acid methyl esters (FAMEs) (methanolic HCl, 10 min, 80°C) and extracted (hexane/methyl-
tert-butyl ether (1:1, v/v)) as described in detail by Osterhout et al. (1991). Fatty acid methyl
esters were analyzed on a gas chromatograph equipped with a flame ionization detector and
an autosampler. Separation of fatty acid methyl esters was achieved using fused-silica
capillary column (25 m by 0.2 mm) with cross-linked 5 % phenyl methyl silicone (film
thickness 0.33 μm; HP Ultra 2). Injection temperature was 250°C and detector temperature
was 300°C. The oven program was 150°C for 2 min, then increased from 150° to 289°C at
4°C min⁻¹, followed by an isothermal period of 11 min. The instrument was equipped with a
flame ionization detector and an autosampler; H$_2$ served as the carrier gas. Fatty acid methyl esters were identified by comparison with standards or by gas chromatography – mass spectrometry (Abraham et al., 1998). For polar lipid fatty acid analysis, lipids were extracted, using a modified Bligh-Dyer procedure (Bligh & Dyer, 1959) as described previously (Abraham et al., 1997). The extract of the total lipids was analysed by electrospray ionization (ESI) using a quadrupol-time-of-flight mass spectrometer (Yakimov et al., 2004).

Genomic DNA from strain Z-0023 was extracted using a sodium dodecyl sulphate-based assay as described previously (Dedysh et al., 1998). The DNA base composition of strain Z-0023T was determined by thermal denaturation using a Unicam SP1800 spectrophotometer (UK) at a heating rate of 0.5°C min$^{-1}$. The mol % G+C value was calculated with the equation of Owen et al. (1969): GC % = T$_{m}$·2.08 - 106.4. The DNA of *Escherichia coli* K-12 was used as the standard. DNA-DNA hybridization of strain Z-0023T and two species of the genus *Asticcacaulis*, i.e. *Asticcacaulis excentricus* (DSM-4724T) and *Asticcacaulis biprosthecium* (DSM-4723T), was done on nitrocellulose membrane filters (Hybond-N, Amersham International, UK) according to Lysenko et al. (1988). Genome size of strain Z-0023T was calculated with the equation of De Ley et al. (1970): M = (98.37 – 0.91 × GC %)/k, where k is DNA re-association rate. PCR-mediated amplification of the 16S rRNA gene from positions 28 to 1491 (numbering according to the International Union of Biochemistry nomenclature for *Escherichia coli* 16S rRNA) was performed using primers Eub9f and Eub1492r and reaction conditions described by Lane (1991). The 16S rRNA gene amplicons were purified using QIAquick spin columns (Qiagen) and sequenced on an ABI Prism 377 DNA sequencer using BigDye terminator chemistry, as specified by the manufacturer (PE Applied Biosystems). Phylogenetic analysis was carried out using the ARB program package (Ludwig et al., 2004).
Small (1-2 mm in diameter), smooth, circular, convex with an entire edge, opaque white colonies were observed on PY-A agar after 2 weeks of incubation at 6ºC. Single colonies were successively selected from plates for re-streaking until a pure culture, designated Z-0023T, was obtained. Microscopic examination revealed that strain Z-0023T is represented by Gram-negative, motile, rod-shaped cells, 0.5-0.7 μm in width and 1.4-2.0 μm in length (Fig. 1a). These cells reproduced by binary fission and underwent a dimorphic life cycle during which a sessile cell with a cellular stalk (a prostheca) divides to give a rise to a motile cell with a polar flagellum (Fig. 1b). A single, non-adhesive prostheca of these bacteria was 0.10-0.15 μm in diameter and had an excentral, sub-polar location on the cell (Fig. 1d,c), which is characteristic of representatives of the genus Asticcacaulis (Poindexter, 1964; Pate \textit{et al}., 1973). The prostheca length ranged from 0.5 to 5.0 μm depending on cultivation conditions and attaining maximal length in defined minimal media. In cells grown on rich complex media (for example, on PYG medium), prosthecae were short or unobservable, while the cells themselves appeared significantly (up to ten fold) elongated and misshapen.

The major distinctive feature of the cells of strain Z-0023T was presence of conical, bell-shaped sheath, which was attached to the sessile cell at the point of juncture of prostheca and cell (Fig. 1d, e, f). Cell division occurs within this sheath (Fig. 1d). Interestingly, these clothes-like sheathes appeared on cells grown at low temperatures (below 10ºC), while the population grown at moderate temperatures (15-25ºC) consisted of sheath-free cells.

In stationary liquid cultures, most of the growth of strain Z-0023T occurred in the form of a pellicle that developed at the surface of the medium. In liquid cultures incubated on a rotary shaker, the cells were evenly dispersed throughout the culture.

Similar to other known representatives of the genus Asticcacaulis, strain Z-0023T was not capable of growth in a mineral medium with glucose or some other compound as the only
growth substrate. It had an absolute requirement for the presence of growth factors in
cultivation media. Thus, utilisation of a given carbon compound was assumed to have
occurred when growth was distinctly heavier in its presence than on the basal PY medium
alone. The compounds tested and the results are presented in Table S1 (Supplementary
material). Most sugars, ethanol, and some organic acids (acetate, malate, fumarate, and
succinate) were the preferable growth substrates. Strain Z-0023^T differed from *A. excentricus*
and *A. biprosthecium* by the inability to utilise pyruvate, and it could also be differentiated
from *A. taihuensis* by the inability to utilise D-cellobiose, D-mannose and D-melibiose.

Strain Z-0023^T grew in the pH range 4.5-8.3 with the optimum at pH 5.6-6.0. The
temperature range for growth was 4-28ºC with the optimum at 15-20ºC. The culture
generation time under optimal temperature conditions, calculated from increases in OD
in the exponential phase of growth, was in the range 30-35 h. Both the specific growth rate and
the growth yield of the culture at 25-28ºC were significantly lower than those attained at 15-
20ºC. No growth occurred at 37ºC.

Compared with *A. excentricus* DSM 4724^T and *A. biprosthecium* DSM 4723^T
(Abraham *et al.*, 2001), NaCl was not required for growth of strain Z-0023 and this isolate
has less tolerance of dissolved salts. Growth inhibition of 50% was observed in the presence
of NaCl in the medium at concentrations of 1-1.5% (w/v), whereas NaCl at concentrations
above 2.0% completely inhibited growth. Strain Z-0023 was susceptible to antibiotics that
inhibit prokaryotic protein synthesis, i.e. streptomycin, tetracycline, erythromycin,
levomycetin, monomycin.

Whole-cell fatty acid compositions and the comparison of glyco- and phospholipid
fatty acid profiles of strains Z-0023^T, *A. biprosthecium* DSM 4723^T, *A. excentricus* DSM
4724^T and *A. taihuensis* T3-B7^T are shown in Table 1 and Table S2 (Supplementary
material), respectively. Similar to other known members of the genus *Asticcacaulis*,
18:1ao7c was the major fatty acid in strain Z-0023^T. The distinguishing feature of the fatty
acid profile of strain Z-0023^T was the absence of the 12:1 3-OH, which up to now was
considered a common feature of the FAME profiles in *Asticcacaulis* (Abraham <i>et al.</i>, 2001).

Glycolipids present in all *Asticcacaulis* spp. are α-D-glucopyranosyl- and α-D-
glucopyranuronosyl-diacylglycerols, also common in *Caulobacter*, *Brevundimonas* and
some other *Alphaproteobacteria*. In strain Z-0023^T four different glycolipids could be
detected, among them a glycolipid of 796 Da previously only detected in *A. biprosthecium*
DSM 4723^T but lacking in *A. excentricus* DSM 4724^T. The (-)-ESI mass spectra of the
phospholipids of the strain Z-0023^T showed clear differences to those of the other type
strains (Table S3, Supplementary material). Phospholipids of this bacterium were of the
phosphatidyl-glycerol (PG) type and six different phospholipids could be identified
analogous to *A. biprosthecium* DSM 4723^T and *A. excentricus* DSM 4724^T. Interestingly,
most of the phospholipids detected in strain Z-0023^T have been also found in *A. excentricus*
DSM 4724^T but not in *A. biprosthecium* DSM 4723^T.

Comparative sequence analysis of the 16S rRNA gene revealed that strain Z-0023^T
belongs to the *Alphaproteobacteria* and, more precisely, that it is included in the
phylogenetic lineage comprising the freshwater and brackish water representatives of the
group *Caulobacter* – *Brevundimonas* – *Asticcacaulis* (Fig. 2). The new isolate from tundra
wetland peat was most closely related to the three known representatives of the genus
Asticcacaulis, i.e. *A. excentricus* DSM 4724^T (95% sequence similarity), *A. taihuensis* T3-
B7^T (98%), and *A. biprosthecium* DSM 4723^T (98%). The DNA G+C content of strain Z-
0023 was 60.4 mol% and the genome size was 2.5×10⁹ Da. DNA-DNA hybridization values
of strain Z-0023 with *A. biprosthecium* DSM 4723^T and *Asticcacaulis excentricus* DSM
4724^T were 40 and 35%, respectively.

The combined morphological and genotypic characteristics reported above indicate that
strain Z-0023^T belongs to the genus *Asticcacaulis*. However, compared with *A. biprosthecium*
and *A. excentricus*, the novel strain has greater tolerance to cold temperatures and low pH, but
has higher sensitivity to dissolved salts. We were not able to compare temperature and pH
growth ranges of strain Z-0023T with those of \textit{A. taihuensis}, since these characteristics have not
been reported for the latter bacterium. The unique morphologic feature of novel strain from
tundra wetland was presence of bell-shaped sheathes that appeared on cells grown at low
temperatures. Strain Z-0023T also differed from all three known species of the genus
\textit{Asticcacaulis} with regard to the assimilation of some substrates (Table 2) and absence of the
12:1 3-OH fatty acid in FAME composition. Thus, we propose a novel species, \textit{Asticcacaulis}
benevestitus sp. nov., for this prosthecate bacterium from tundra wetland peat. The major
characteristics differentiating this novel species from the other species of the genus
\textit{Asticcacaulis} are summarized in Table 2.

\textbf{Description of \textit{Asticcacaulis} benevestitus sp. nov.}

\textit{Asticcacaulis} benevestitus (be.ne.vesti’ tus. L. adv. bene well; L. part. adj. vestitus
clothed/clad; N.L. masc. part. adj. benevestitus well clad).

Rod-shaped, Gram-negative cells, 0.5-0.7 by 1.4-2.0 μm. Reproduces by binary fission.
Undergoes a dimorphic life cycle during which a sessile cell with one excentral, sub-polar
prostheca divides to give rise to a motile cell with a single, polar flagellum. A single, non-
adhesive prostheca of 0.10-0.15 μm in diameter arises from a sub-polar site. At temperatures
below 10°C most prosthecate cells are embedded in conical bell-shaped sheath, which is
attached to the cell at the point of juncture of prostheca and cell. Colonies are opaque white,
smooth, circular, convex with an entire edge, and 1-2.5 mm in diameter after 7 days of
growth at 20°C on PYG medium. Chemo-organotrophic aerobe. Carbon sources include
glucose, sucrose, xylose, maltose, galactose, arabinose, lactose, fructose, ethanol, acetate,
malate, fumarate, succinate, raffinose, rhamnose, trehalose. Yeast extract is required for
growth. Temperature range for growth is 4-28°C (optimum at 15-20°C). Growth occurs
between pH 4.5 and 8.3, with an optimum at pH 5.6-6.0. NaCl is not required for growth and
tolerated up to a concentration of 2.0% (w/v). Susceptible to antibiotics that inhibit
prokaryotic protein synthesis. The major PLFA is 18:1ω7c and the major phospholipids are phosphatidylglycerols. The G+C content is 60.4 mol%. Genome size is 2.5×10^9 Da. The type strain, Z-0023T ($=\text{DSMZ 16100}^\mathrm{T} = \text{ATCC BAA-896}^\mathrm{T}$) was isolated from a tundra wetland in the Vorkuta region, northern Russia.

ACKNOWLEDGMENTS

This research was supported by the Federal Scientific-Technical Program “Biogenic sinks, sources, and reservoirs of the greenhouse gases” No 43.016.11.1622, the Russian Science Support Foundation and the Program “Molecular and Cell Biology” of Russian Academy of Sciences.
REFERENCES

Table 1. Whole-cell fatty acid compositions of the novel prosthecate isolate Z-0023 and other representatives of the genus *Asticcacaulis*

<table>
<thead>
<tr>
<th>FAME</th>
<th>12:0</th>
<th>12:0</th>
<th>12:1</th>
<th>14:0</th>
<th>15:0a</th>
<th>16:1</th>
<th>16:0</th>
<th>16:0</th>
<th>17:0</th>
<th>17:0</th>
<th>17:1</th>
<th>17:1</th>
<th>18:1</th>
<th>18:0</th>
<th>19:0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-OH</td>
<td>3-OH</td>
<td></td>
<td></td>
<td></td>
<td>ω7/ω9</td>
<td>iso</td>
<td>2-OH</td>
<td>cyclo7,8</td>
<td></td>
<td>ω6c</td>
<td>ω8c</td>
<td></td>
<td></td>
<td>cyclo7,8</td>
</tr>
<tr>
<td>Strain Z-0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3,4</td>
<td>14,8</td>
<td>10,6</td>
<td>-</td>
<td>-</td>
<td>2,2</td>
<td>1,7</td>
<td>-</td>
<td>-</td>
<td>57,5</td>
</tr>
<tr>
<td>A. biprosthecium</td>
<td>2,5</td>
<td>-</td>
<td>7,5</td>
<td>1,1</td>
<td>-</td>
<td>2,9</td>
<td>13,8</td>
<td>20,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,0</td>
<td>-</td>
<td>40,7</td>
</tr>
<tr>
<td>A. excentricus</td>
<td>2,3</td>
<td>-</td>
<td>2,6</td>
<td>1,1</td>
<td>2,6</td>
<td>1,5</td>
<td>7,4</td>
<td>28,7</td>
<td>-</td>
<td>10,4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>41,9</td>
</tr>
<tr>
<td>A. taihuensis</td>
<td>-</td>
<td>2,6</td>
<td>1,1</td>
<td>2,6</td>
<td>1,5</td>
<td>7,4</td>
<td>28,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10,4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. Major characteristics that distinguish *Asticcacaulis benevestitus* sp. nov. and other species of the genus *Asticcacaulis*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>A. excentricus<sup>a</sup></th>
<th>A. biprosthecium<sup>b</sup></th>
<th>A. taihuensis<sup>c</sup></th>
<th>A. benevestitus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of prosthecae per cell</td>
<td>1</td>
<td>1-2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Presence of a sheath</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Utilization of:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piruvate</td>
<td>+</td>
<td>+</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>L-Arabinose</td>
<td>v</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Sucrose</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D-Mannose</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Cellobiose</td>
<td>nd</td>
<td>nd</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D-Melibiose</td>
<td>nd</td>
<td>nd</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Temperature optimum, °C</td>
<td>30</td>
<td>30</td>
<td>nd</td>
<td>15-20</td>
</tr>
<tr>
<td>Optimum pH</td>
<td>6.5</td>
<td>7.2</td>
<td>nd</td>
<td>5.6-6.0</td>
</tr>
<tr>
<td>NaCl is required for growth</td>
<td>+</td>
<td>+</td>
<td>nd</td>
<td>-</td>
</tr>
<tr>
<td>Growth at NaCl > 2% (w/v)</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Presence of 12:1 3-OH fatty acid</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>G + C composition (mol%)</td>
<td>55</td>
<td>61</td>
<td>59</td>
<td>60.4</td>
</tr>
</tbody>
</table>

^a- Data are from Poindexter (1964); ^b – data are from Pate *et al.* (1973);^c – data are from Liu *et al.* (2005);

v – variable, nd – not determined.
Figure captions

Fig. 1. (A) Phase-contrast micrograph of cells of strain Z-0023T grown on PY-A medium for 3 weeks at 6°C; bar, 10 μm; (B-E) electron micrographs of cells of strain Z-0023T; (F) electron micrograph of a section taken through the area of juncture of cell and prostheca of strain Z-0023T. (B-F) bars, 0.5 μm. p – prostheca, f – flagellum, sh – sheath, sb – stalk bands.

Fig. 2. 16S rDNA-based neighbour-joining tree showing the phylogenetic position of strain Z-0023T in relation to Asticcacaulis biprosthecium, Asticcacaulis excentricus, Asticcacaulis taihuensis, prosthecate bacteria of the genera Caulobacter, Brevundimonas, Maricaulis and some other representative members of the Alphaproteobacteria. Bootstrap values (1000 data resamplings) >50% are shown. 16S rDNA sequence of gammaproteobacterial Pseudomonas stutzeri (AF143245) was used as an outgroup. The scale bar represents 0.1 substitutions per nucleotide position.