This is a pre- or post-print of an article published in
Seitz, M., Beineke, A., Seele, J., Fulde, M., Valentin-Weigand, P., Baums, C.G.
A novel intranasal mouse model for mucosal colonization by Streptococcus suis serotype 2
A novel intranasal mouse model for mucosal colonisation of

*Streptococcus suis* serotype 2

**Running Title:** Intranasal S. suis mouse model

**Contents category:** Models of infection

Maren Seitz¹, Andreas Beineke², Jana Seele¹, Marcus Fulde³, Peter Valentin-Weigand¹ and Christoph Georg Baums¹*

¹ Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
² Institute for Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
³ Medical Microbiology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany

*Corresponding author. Mailing address:
Stiftung Tierärztliche Hochschule Hannover
Zentrum fuer Infektionsmedizin
Institut fuer Mikrobiologie
Bischofsholer Damm 15
D-30173 Hannover, GERMANY
Phone: ++49-511 856-7563
Fax: ++49-511 856-7697
Email: christoph.baums@gmx.de
ABBREVIATION LIST

CDC cholesterol-dependent cytolysin
d.p.i. days post infection
Ex. Experiment
S. Streptococcus
SLY suilysin
TNL tracheonasal lavarge
S. aureus Staphylococcus aureus
ABSTRACT

Streptococcus (S.) suis causes meningitis and various other diseases in pigs and humans. Healthy piglets carrying virulent S. suis strains on their mucosal surfaces are epidemiologically very important. The objective of this study was to establish an intranasal S. suis mouse model for invasion and colonisation of the respiratory tract. CD1 mice were intranasally infected with a highly virulent S. suis serotype 2 strain under different conditions. Clinical, histological and bacteriological screenings revealed that invasion of host tissue occurred in the majority of mice only after predisposition with 12.5 µl 1 % acetic acid per nostril. Severe fibrinosuppurative or purulent necrotizing pneumonia associated with S. suis was a common manifestation. Furthermore, a novel model to study nasopharyngeal colonisation was established by reducing the volume of 1 % acetic acid per nostril to 5 µl prior S. suis application. This model mimics asymptomatic carriage in swine as all mice carried S. suis on their respiratory mucosa 7 days post infection in moderate to high numbers without development of pneumonia or any other invasive S. suis disease. This intranasal S. suis model was applied to investigate the function of suilysin in colonisation. Though an isogenic suilysin mutant was isolated from the upper respiratory tract at a lower recovery rate than its wild type parental strain 14 days post infection, differences were not significant and did not indicate severe attenuation in colonisation. In conclusion, this work describes the first intranasal mice model to study colonisation of the respiratory tract by a highly virulent S. suis pathotype.
Streptococcus (S.) suis is one of the most important swine pathogens worldwide, causing severe diseases such as meningitis, septicaemia and bronchopneumonia (Higgins & Gottschalk, 2005). Furthermore, it is an emerging zoonotic agent. Meningitis and septicaemia are also important manifestations of S. suis infections in humans (Tang et al., 2006; Gottschalk et al., 2007). Noteworthy, in 2005 a S. suis outbreak in China affected 204 humans, of which 38 died mainly because of streptococcal toxic shock-like syndrome (Tang et al., 2006). In Vietnam, S. suis is the most important cause of meningitis in adults (Mai et al., 2008). This is related to eating “high risk” dishes, such as undercooked blood and intestine (Nghia et al., 2011). Occupational exposure to pigs and pork is worldwide the most important risk factor for S. suis infections (Arends & Zanen, 2005).

Pigs and wild boars are considered as the natural reservoir of S. suis (Baums et al., 2007; Clifton-Hadley & Alexander, 1980; Higgins & Gottschalk, 2005). Different mucosal surfaces might be colonised by S. suis. In weaning piglets, S. suis is among the most abundant colonisers of the upper respiratory and alimentary tract (Baele et al., 2001; Su et al., 2008). Healthy carriers of virulent S. suis strains play an important role in the epidemiology of S. suis diseases in pigs and humans (Ngo et al., 2011). Their movement to uninfected herds leads to spreading of disease. As S. suis is a facultative pathogen, different biotic and abiotic factors such as virus infections, corrosive gases and crowding are thought to promote S. suis diseases in modern swine production.

S. suis shows a high diversity as reflected by the presence of at least 33 serotypes. Serotype 2 is worldwide the most prevalent among invasive isolates of pigs and humans (Wisselink et al., 2000; Wei et al., 2009). The serotype is determined by the
polysaccharide capsule. The capsule protects the bacteria against opsonophagocytosis and functions as an important virulence factor (Charland et al., 1998; Smith et al., 1999). A number of other surface-associated factors have also been demonstrated to contribute to the pathogenesis of S. suis diseases (Baums & Valentin-Weigand, 2009; Fittipaldi et al. 2012). The majority but not all invasive S. suis isolates secrete a pore-forming cholesterol-dependent cytolysin (CDC) called suilysin (SLY) (King et al., 2001). SLY might exhibit different functions in the pathogenesis of S. suis diseases as it has been shown to cause cytotoxicity of various cells in vitro (Allen et al., 2001; Jacobs et al., 1994; Segura & Gottschalk, 2002). It may also contribute to bacterial escape of opsonophagocytosis at sublytic concentrations (Chabot-Roy et al., 2006; Lecours et al., 2011; Benga et al., 2008).

Though the pathogenesis of S. suis meningitis is still not well understood, even less is known about the mechanisms employed by S. suis to colonise mucosal surfaces. As a matter of fact, not a single factor of S. suis has been demonstrated to be crucial for colonisation.

A S. suis mouse meningitis model was first described by Williams et al. (1988) using intravenous application. Histopathological lesions in the brain and inflammatory responses were more recently characterized in detail in an intraperitoneal S. suis model in CD1 mice (Dominguez-Punaro et al., 2007). In the latter model 20 % of infected mice died shortly after infection in association with high levels of systemic proinflammatory cytokines. Animals surviving septicaemia frequently developed meningitis. As the upper respiratory tract is considered to be the port of entry for S. suis (Williams & Blakemore, 1990), early steps in the pathogenesis of S. suis diseases cannot be studied in the described mouse models. Furthermore, colonisation of the respiratory mucosa can only be investigated in mice using intranasal infection. Here, we report for the first time that S. suis colonises the murine
respiratory tract efficiently after intranasal application following predisposition. As CDC, in particular pneumolysin, have been demonstrated to contribute to mucosal colonisation (Richards et al., 2010; Kadioglu et al., 2002) the novel S. suis mouse model was applied to investigate the contribution of suilysin to colonisation of the murine respiratory tract.

METHODS

Bacterial strains and culture conditions. S. suis serotype 2 wild type strain 10 was kindly provided by H. Smith (Lelystad, Netherlands). This strain expresses extracellular factor, muramidase-released protein, SLY, fibronectin and fibrinogen binding protein of S. suis and opacity factor of S. suis. It has been used by different groups successfully for mutagenesis and experimental intranasal infections of pigs (Baums et al., 2006; Smith et al., 1999; Vecht et al., 1997; de Greeff et al., 2002). The isogenic suilysin deficient mutant of strain 10 (designed 10Δsly) was constructed during a previous study (Benga, Fulde, Neis, Goethe & Valentin-Weigand, 2008). Staphylococcus aureus (S. aureus) was identified by the typical colony morphology, a positive coagulase and hyaluronidase reaction (Noteworthy, all putative isolates showed the typical golden coloured colony). Bacteria were grown on Columbia agar supplemented with 6 % sheep blood (Oxoid) or in Todd-Hewitt broth (THB, Difco) under aerobic conditions at 37 °C.

Experimental intranasal infection of mice. Streptococci grown to late exponential growth phase (OD_{600} 0.8) were harvested by centrifugation and resuspended in PBS (pH 7.4) for intranasal infection. Inoculum concentrations were verified by plating 10-fold serial dilutions. Four week old specific pathogen free female mice of the outbred
strain CrI:CD1 (ICR) obtained from Charles River Laboratories (Sulzfeld, Germany) were used for all experiments (ex.) except ex. 2, in which mice of the *S. aureus* free outbred strain Hsd:ICR (CD1®) were used that had been purchased from Harlan Laboratories (AN Venray, The Netherlands). Animals were randomly divided into groups consisting of 5 to 6 animals each. Mice were allowed to acclimate for one week and cared for in accordance with the principles outlined in the European Convention for the Protection of Vertebrate Animal Used for Experimental and Other Scientific Purposes [European Treaty Series, no. 123: http://conventions.coe.int/treaty/en/treaties/html/123.htm; permit no.33.9-42502-04-08/1589]. Before infection mice were anesthetised via inhalation of isofluran (IsoFlo®, Albrecht). In ex. 2 mice were pretreated with 12.5 µl, and in ex. 3 and 4 with 5 µl 1% acetic acid (pH 4.0) placed in each nostril 1 h prior intranasal infection. After a controlled recovery phase and further anaesthesia, mice were infected with 5 x 10⁹ c.f.u. of either *S. suis* wild type strain 10 or strain 10Δsly. The inoculum was applied in two drops of 12.5 µl placed in front of the nostrils.

**Clinical score.** Animals were examined every 8 hours. The health status was rated by using a clinical score sheet (Table 1), including weight development, clinical signs of general sickness (rough coat, rapid breathing, dehydration) and clinical signs indicating meningitis (apathy, apraxia) or septicaemia (swollen eyes, depression). A cumulative score of 3 to 4 indicated mild clinical signs, 5 to 6 moderate clinical signs and a score greater 6 severe clinical signs with specific regards to neural failure, respectively. Mice with a cumulative score equal or greater than 3 were classified as diseased (calculation of morbidity). In the case of severe weight loss (> 20 %) and/or enduring severe clinical signs, mice were euthanized for reasons of animal welfare by inhalation of CO₂ and cervical dislocation.
Histological screening. Immediately after euthanasia, necropsy was conducted and the following organs were aseptically removed and split for histological and bacteriological screenings: spleen, liver, kidney, heart, lung and brain. For histology organs were fixed in 10 % formalin and embedded in paraffin wax. In addition, spinal cord segments (cervical, thoracic, lumbar) encased within vertebral bodies and sagittal sections of the nasal cavity were formalin fixed, decalcified in 10 % ethylenediaminetetraacetic acid solution for 48 hours and subsequently embedded in paraffin wax. The histological screenings were carried out as blinded experiments. Fibrinosuppurative and purulent necrotizing lesions were scored as described for piglets (Baums et al., 2006). The group score $\omega$ was calculated by dividing the sum of the highest scores of each animal for any of the investigated organs through the number of animals. Rhinitis was not included.

Reisolation of S. suis strains from tissue and tracheonasal lavage (TNL). One half of each organ was suspended in 5 ml cold PBS (pH 7.4). After weighing suspensions were homogenized with an Ultra Turrax (IKA). Ten-fold serial dilutions of the tissue-PBS-suspensions were plated on blood agar plates. Colony forming units were counted after incubation at 37 °C for 24 h and bacterial load per mg organ was calculated. As a read out parameter for colonisation of the upper respiratory tract TNL was obtained and investigated as follows. The trachea was opened and a retrograde irrigation of the nasal cavity with 300 µl PBS was collected. After serial platings c.f.u. per ml TNL of $\alpha$-haemolytic streptococci with colony morphology typical for S. suis strain 10 were determined. Noteworthy, mice were also colonized in the respiratory tract by other $\alpha$-haemolytic streptococci showing different colony morphology, namely
a much larger zone of α-haemolysis and formation of smaller colonies. Isolated typical α-haemolytic streptococci were profiled in a *S. suis* multiplex PCR for the detection of *mrp, epf, sly, arcA, gdh, cps1, cps2, cps7, and cps9* (Silva *et al.*, 2006). Isolates from mice challenged with 10Δsly were additionally investigated in a sly-specific PCR using the primer pair slyAgefor (TGTACCGGTATTCCAAACAAGATATTAA) and slyAge3new (TTAACCAGTTACTCTATCACCTCATCCG) with a final concentration of 0.5 µM as described previously (Silva *et al.*, 2006). Based on c.f.u. per mg organ or per ml TNL, bacterial loads were classified as low (+; < 100), moderate (++; ≥ 100 but < 1000) or high (+++; > 1000).

**Statistical analysis.** The Mann-Whitney test was performed to analyse differences between two groups of mice. Statistical significance was defined at *P* < 0.05.

**RESULTS AND DISCUSSION**

**Intranasal infection without predisposition**

A main objective of this study was to establish an intranasal model for colonisation and/or invasion for *S. suis* in CD1 mice. In the first experiment, a high dose of 5 × 10⁹ c.f.u. *S. suis* serotype 2 was applied intranasally without previous predisposition. Nine of 10 mice did not show any clinical signs of infection during the observation period of 5 or 12 days, respectively (Table 2). Apathy, continuing anorexia and weight loss of more than 20 % was registered in one mouse starting on the 4th d.p.i. (day post infection, Table 2). Histopathological screening revealed a severe purulent meningitis and encephalitis associated with recovery of 4,000 c.f.u. of the challenge
strain per mg brain (Tables 3 and 4). In accordance with these results, Williams et al.
(1988) recorded also only disease in one of five mice intranasally infected with S. suis serotype 2.
Colonisation of the respiratory tract was monitored in this study through quantification of the specific bacterial content in TNL and the lungs. The S. suis challenge strain was detected in 4 of 5 mice in the TNL and in 2 of 5 mice in the lungs on the 5th d.p.i.. However, the mean bacterial load of S. suis in the TNL was only 439 c.f.u. ml\(^{-1}\) (SD: ± 820). Twelve d.p.i. S. suis was recovered from TNL of only 2 mice (Table 4). These results indicated that S. suis serotype 2 colonised the respiratory tract of CD1 mice transiently in low numbers after intranasal application without any predisposition.

**Intranasal infection model for invasion after predisposition with acetic acid**

In piglets, S. suis mucosal infection models have been described which include experimental predisposition, such as infection with *Bordetella bronchiseptica* (Smith *et al*., 1996; Smith *et al*., 1999) or local application of 1 % acetic acid (Baums *et al*., 2006; Pallares *et al*., 2003). Therefore we treated CD1 mice intranasally with 12.5 µl 1 % acetic acid per nostril 1 h prior infection with S. suis. Morbidity and mortality were 67 % and 25 %, respectively (results not shown). Severe fibrinosuppurative or purulent necrotizing pneumonia associated with a high load of S. suis (up to 23,000 c.f.u. mg\(^{-1}\) lung tissue) was a common finding in these mice. However, in 8 of 24 mice S. aureus was also detected in inner organs. A likely explanation for this finding was that local application of acetic acid allowed S. aureus colonising the respiratory tract to invade deeper tissues. Nevertheless, infection with S. aureus was not a prerequisite for S. suis infection as in more than 50 % of mice positive for S. suis in the brain, lung, heart or any other organ S. aureus was not detected in these tissues.
Noteworthy, we have never observed coinfections in piglets predisposed through intranasal application of 1 % acetic acid.

To exclude coinfection with commensal *S. aureus* a further experiment with 12.5 µl acetic acid predisposition was conducted with 10 *S. aureus* free CD1 mice (ex. 2 in Tables 2 to 4). Morbidity and mortality was 40 % and 20 %, respectively (Table 2). Moderate to severe purulent necrotizing or fibrinosuppurative rhinitis was detectable in all infected animals and severe pneumonia in 4 of 10 mice. Accordingly, the group pathoscore ω was higher in comparison to the non-predisposed group (Table 3). *S. suis* colonised the respiratory tract very efficiently in these mice as indicated by reisolation of the challenge strain from TNL in all animals with a mean specific bacterial load of $52 \times 10^4$ c.f.u. ml$^{-1}$ (SD: ± $94 \times 10^4$). As expected *S. aureus* coinfection was not recorded in this experiment.

The results indicated that application of 12.5 µl 1 % acetic acid per nostril prior to experimental *S. suis* infection predisposed mice to rhinitis and pneumonia rather than to meningitis, the most important pathology of *S. suis* infection in swine and humans. This is in contrast to the effect of intranasal acetic acid predisposition in swine, leading mainly to *S. suis*-associated pleuritis, peritonitis and meningitis (Baums *et al.*, 2006; Baums *et al.*, 2009; Pallares *et al.*, 2003) and the intraperitoneal CD1 model reported by Dominguez-Punaro *et al.* (2007) with a 40 % prevalence of meningitis. However, as demonstrated by bacteriology, *S. suis* invaded different inner organs in mice after intranasal application following 1 % acetic acid predisposition (12.5 µl per nostril). Therefore this model might be used to study invasion and spreading of *S. suis* in mice, using bacteriological screening of different inner organs as an important read out parameter. However, availability of *S. aureus* free CD1 mice is at present very limited. Alternatively, animals might be treated with antibiotics prior to *S. suis* challenge as conducted with piglets by Allen *et al.* (2001).
Intranasal infection model for mucosal colonisation

The high rate of severe fibrinosuppurative or purulent necrotizing rhinitis and pneumonia observed in ex. 2 was inappropriate for a model designed to study colonisation of mucosal surfaces in asymptomatic carriers. Therefore, the volume of 1 % acetic acid applied to each nostril prior to infection was reduced to 5 µl in ex. 3 in order to establish a mucosal colonisation model for S. suis in CD1 mice. None of the 10 mice included in this experiment developed pneumonia or severe clinical signs (Tables 2 and 3). Only one mouse received a cumulative clinical score above 3 and was thus classified as diseased. Furthermore, only one case of severe rhinitis was recorded in the histological screening (Table 3). Importantly, the challenge strain was detected in 100 % and 60 % of these mice 7 d.p.i. in the TNL and lung, respectively (Table 4). Ninety percent of the mice had a specific bacterial load above 1000 c.f.u. ml⁻¹ TNL (mean of the group ± SD: 34 x 10⁴ ± 63 x 10⁴ c.f.u. ml⁻¹). The daily weight increase and the course of the cumulative clinical score after challenge (Fig. 1) as well as the histological findings (Table 3) indicated that these mice were asymptomatic carriers and not affected by an acute disease (with an exception of one mouse for one day) or a developing chronic infection. Based on these results, we propose a mouse model for mucosal colonisation of the reference S. suis serotype 2 strain 10 including predisposition with 5 µl 1 % acetic acid per nostril.

Comparison of colonisation of an isogenic sly-mutant with its wildtype strain

The intranasal mouse model for colonisation including predisposition with 5 µl 1 % acetic acid was used to investigate the possible contribution of SLY to mucosal
colonisation of *S. suis*. None the mice either infected with the wild type strain 10 or 10Δsly developed severe clinical signs (Table 2). In accordance, none of the infected animals died and only two cases of general sickness including rough coat, moderate depression and persistent weight loss ≥ 5% were observed in each group. Accordingly, severe inflammations were not recorded in any of these mice. However, one mouse infected with strain 10 showed moderate purulent pleuritis and one moderate purulent nephritis (Table 3).

The challenge strain was detected in TNL of all mice infected either with the wild type strain or the isogenic suilysin mutant (10Δsly) 7 d.p.i. in comparable concentrations (mean in 10^3 c.f.u. ml^(-1) TNL ± SD of the two groups: 45 ± 60 and 62 ± 86, respectively), indicating no attenuation in early colonisation of the sly mutant (Table 4). Fourteen d.p.i. the wt strain was detected in TNL of 4 out of 6 mice (mean c.f.u. ml^(-1) TNL ± SD: 511 ± 947). In contrast, the sly mutant (10Δsly) was isolated in only 1 out of 6 mice 14 d.p.i. (mean c.f.u. ml^(-1) TNL ± SD: 78 ± 191). However, this difference was not significant (*P* = 0.13). It has been reported, that pneumolysin has an effect on long-term nasopharyngeal carriage since a pneumolysin-deficient mutant was faster cleared than the wildtype in an intranasal *S. pneumoniae* carriage model (Richards *et al.*, 2010; Kadioglu *et al.*, 2002). As the differences of the sly mutant and the wt strain were not significant further studies are warranted to elucidate a putative contribution of SLY to sustained colonisation of the respiratory epithelium. Many wt *S. suis* strains do not express SLY, including virulent serotype 2 strains in North America (King *et al.*, 2001). However, as different *S. suis* strains might exhibit also differences in colonisation mechanisms, SLY might well be a factor contributing to sustained colonisation of virulent European serotype 2 strains.

In conclusion, different putative intranasal murine models for *S. suis* invasion and colonisation were evaluated in this work. Predisposition with 12.5 µl 1% acetic acid...
per nostril promoted invasion of different inner organs by the *S. suis* serotype 2 challenge strain. Severe purulent necrotizing pneumonia was a common finding among infected mice in this model. As the rate of meningitis was rather low, intravenous or intraperitoneal mouse models are more appropriate to study the later stages in the pathogenesis of *S. suis* meningitis. However, a new intranasal mouse model established in this work including predisposition with 5 µl 1 % acetic acid per nostril should allow investigation of mucosal colonisation mechanisms employed by *S. suis* in mice in the future.

**ACKNOWLEDGMENTS**

We thank Hilde Smith (DLO-Institute for Animal Science and Health, The Netherlands) for providing strain 10. Oliver Goldmann (Helmholtz Centre for Infection Research, Braunschweig, Germany) kindly introduced us to intranasal application techniques and anaesthesia of mice. Sabrina Lilienthal is acknowledged for her help with infections and necropsies. Bacteriological investigations of mice were kindly supported by Jutta Verspohl.

This study was financially supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany (SFB587).
Table 1. Scoring of parameters for calculation of the cumulative clinical score* of a S. suis infected mouse

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Body weight</td>
<td>Constant or gain</td>
</tr>
<tr>
<td>Coat</td>
<td>Flat, glossy</td>
</tr>
<tr>
<td>Breathing</td>
<td>Adequate, rhythmic</td>
</tr>
<tr>
<td>Dehydration</td>
<td>Normal skin elasticity</td>
</tr>
<tr>
<td>Bearing</td>
<td>Normal</td>
</tr>
<tr>
<td>Eyes</td>
<td>Normal</td>
</tr>
<tr>
<td>Activity</td>
<td>Normal active</td>
</tr>
<tr>
<td>Locomotion</td>
<td>No anomaly</td>
</tr>
</tbody>
</table>

* The sum of the scores of the 8 parameters of a mouse for a defined time point of control
Table 2. Clinical course of CD1 mice intranasally infected with $5 \times 10^9$ c.f.u. of the *S. suis* wildtype (wt) strain 10 or its isogenic suilysin mutant (10Δsly)

<table>
<thead>
<tr>
<th>Ex.</th>
<th>No. of mice</th>
<th>Acetic acid pre-treatment</th>
<th>S. suis strain</th>
<th>d.p.i.</th>
<th>No. of mice/total no. of mice</th>
<th>Morbidity</th>
<th>Mortality</th>
<th>Severe clinical signs</th>
<th>Maximum weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>no</td>
<td>wt</td>
<td>5, 12</td>
<td>1/10</td>
<td>0/10</td>
<td>0/10</td>
<td>2/10</td>
<td>1/10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>12.5 µl</td>
<td>wt</td>
<td>2, 3</td>
<td>4/10</td>
<td>2/10</td>
<td>2/10</td>
<td>7/10</td>
<td>1/10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>5 µl</td>
<td>wt</td>
<td>7</td>
<td>1/10</td>
<td>0/10</td>
<td>0/10</td>
<td>2/10</td>
<td>0/10</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>5 µl</td>
<td>wt</td>
<td>7, 14</td>
<td>2/12</td>
<td>0/12</td>
<td>0/12</td>
<td>10/12</td>
<td>0/12</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>5 µl</td>
<td>10Δsly</td>
<td>7, 14</td>
<td>2/12</td>
<td>0/12</td>
<td>0/12</td>
<td>6/12</td>
<td>0/12</td>
</tr>
</tbody>
</table>

* Volume of 1 % acetic acid applied to each nostril 1 h prior to infection
† Days post infection, on which mice were killed
‡ Mice with a cumulative clinical score greater or equal 3 were regarded as diseased
§ In particular persistent anorexia, apathy, and/or neural disorder leading to a cumulative clinical score > 6
¶ Half of the mice were sacrificed on each of these d.p.i.
‖ Two mice were killed on the 2nd day post infection for reasons of animal welfare
Table 3. Scoring of fibrinosuppurative and purulent necrotizing lesions of CD1 mice intranasally infected with 5 x 10^9 c.f.u. of the S. suis wildtype (wt) strain 10 or its isogenic suilysin mutant (10Δsly).

<table>
<thead>
<tr>
<th>Ex.</th>
<th>No. of mice</th>
<th>Acetic acid pre-treatment</th>
<th>S. suis strain</th>
<th>d.p.i.</th>
<th>No. of mice/total no. of mice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nose</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rhinitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4&lt;sup&gt;†&lt;/sup&gt; 2&lt;sup&gt;‡&lt;/sup&gt; 1&lt;sup.§&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spleen, liver, kidney</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Splenitis&lt;sup&gt;†&lt;/sup&gt;, hepatitis, nephritis, peritonitis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4&lt;sup&gt;†&lt;/sup&gt; 2&lt;sup&gt;‡&lt;/sup&gt; 1&lt;sup.§&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pneumonia, pleuritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4&lt;sup&gt;†&lt;/sup&gt; 2&lt;sup&gt;‡&lt;/sup&gt; 1&lt;sup.§&lt;/sup&gt;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Brain and spinal cord</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meningitis encephalitis,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5&lt;sup&gt;†&lt;/sup&gt; 3&lt;sup&gt;‡&lt;/sup&gt; 1&lt;sup.§&lt;/sup&gt;</td>
</tr>
</tbody>
</table>

|     |             |                           |               |       |                             |
| 1   | 10          | no                        | wt            | 5, 12 | 0/10 1/10 0/10              |
| 2   | 10          | 12.5 µl                   | wt            | 2, 3  | 7/10 3/10 0/10              |
| 3   | 10          | 5 µl                      | wt            | 7     | 1/10 1/10 1/10             |
| 4   | 6           | 5 µl                      | wt            | 7     | 0/6 2/6 3/6                |
| 4   | 6           | 5 µl                      | 10Δsly         | 14    | 0/6 0/6 0/6                |
| 4   | 6           | 5 µl                      | 10Δsly         | 14    | 0/6 1/6 0/6                |

<sup>†</sup> Volume of 1% acetic acid applied to each nostril 1 h prior infection
<sup>‡</sup> Scoring of 4 and 5 indicates moderate to severe diffuse or multifocal fibrinosuppurative or purulent necrotizing inflammations
<sup.§</sup> Scoring of 2 and 3 indicates mild focal fibrinosuppurative or purulent necrotizing inflammation
<sup>§</sup> Individual single perivascular immune cells received a score of 1
<sup>‖</sup> Infiltration of splenic red pulp with neutrophilic granulocytes

ω<sup>†</sup> = Σ score<sub>max</sub>/n<sub>animals</sub> (Baums et al., 2006); rhinitis is not included in the score ω
<sup>a</sup> Moderate focal purulent pleuritis was registered in one mouse.
Table 4. Reisolation of the wildtype (wt) *S. suis* challenge strain 10 or its isogenic suisysin mutant (10Δsly) in intranasally infected mice

<table>
<thead>
<tr>
<th>Ex.</th>
<th>Acetic acid pre-treatment</th>
<th>S. suis strain</th>
<th>d.p.i. †</th>
<th>TNL§</th>
<th>Spleen, liver, kidney, heart†</th>
<th>Lung‡</th>
<th>Brain§</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>+++</td>
</tr>
</tbody>
</table>

* Volume of 1 % acetic acid applied to each nostril 1 h prior to infection
† Days post infection, on which mice were sacrificed
‡ Isolation of the challenge strain was confirmed in a multiplex PCR for detection of *mrp, sly, epf, arcA, cps1, cps2, cps7*, and *cps 9* (Silva et al., 2006). All typical α-hemolytic colonies recovered in this work were positive for the profile of virulence-associated genes of the challenge strains.
§ Tracheo-nasal lavage

Bacterial loads in c.f.u. per mg organ or per ml TNL were classified as low (+ ; < 100), moderate (++; > 100 but ≤ 1000) or high (+++; > 1000)
REFERENCES


Baums, C. G., Verkuhlen, G. J., Rehm, T., Silva, L. M., Beyerbach, M.,
genotypes in wild boars of Northwestern Germany. Appl Environ Microbiol 73, 711-
717.

Polysaccharide capsule and suilysin contribute to extracellular survival of
Streptococcus suis co-cultivated with primary porcine phagocytes. Vet Microbiol 132,
211-219.

Phagocytosis and killing of Streptococcus suis by porcine neutrophils. Microb Pathog
41, 21-32.

Streptococcus suis serotype 2 mutants deficient in capsular expression

Clifton-Hadley, F. A. & Alexander, T. J. (1980). The carrier site and carrier rate of
Streptococcus suis type II in pigs. Vet Rec 107, 40-41.

de Greeff, A., Buys, H., Verhaar, R., Dijkstra, J., van Alphen, L. & Smith, H. E.
(2002). Contribution of fibronectin-binding protein to pathogenesis of Streptococcus
suis serotype 2. Infect Immun 70, 1319-1325.

Dominguez-Punaro, M. C., Segura, M., Plante, M. M., Lacouture, S., Rivest, S. &
Gottschalk, M. (2007). Streptococcus suis serotype 2, an important swine and


**King, S. J., Heath, P. J., Luque, I., Tarradas, C., Dowson, C. G. & Whatmore, A. M. (2001).** Distribution and genetic diversity of suilysin in *Streptococcus suis* isolated


Ngo, T. H., Tran, T. B., Tran, T. T., Nguyen, V. D., Campbell, J., Pham, H. A., Huynh, H. T., Nguyen, V. V., Bryant, J. E. & other authors (2011). Slaughterhouse pigs are a major reservoir of *Streptococcus suis* serotype 2 capable of causing human infection in southern Vietnam. *PLoS One* **6**, e17943.


Figure legend

Fig. 1. Body weight and cumulative clinical score (see Table 1 for definition) of CD1 mice intranasally infected with $5 \times 10^9$ c.f.u. of *S. suis* strain 10 after predisposition through application of 5 µl 1 % acetic acid per nostril (ex. 3). The *S. suis* challenge strain was detected in all 10 mice with a specific bacterial load greater than 100 c.f.u. per ml in the tracheo-nasal lavage taken 7 days post infection (Table 4). Mice with a cumulative clinical score greater or equal 3 were regarded as diseased. Data points represent mean values ($n = 10$) ± SD.