This is a pre- or post-print of an article published in
Vieyres, G., Brohm, C., Friesland, M., Gentzsch, J.,
Wölk, B., Roingeard, P., Steinmann, E., Pietschmann, T.
Subcellular localization and function of an epitope-
tagged p7 viroporin in hepatitis C virus-producing cells
Subcellular localization and function of an epitope-tagged p7

in hepatitis C virus-producing cells

Gabrielle Vieyres1§, Christiane Brohm1§, Martina Friesland1†, Juliane Gentzsch1‡, Benno Wölk2, Philippe Roingeard3, Eike Steinmann1, and Thomas Pietschmann1#

1Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI)

2Institute of Virology, Medical School Hannover, Hannover, Germany

3INSERM U966, Université François Rabelais and CHRU de Tours, Tours, France

†Present address: Centro Nacional de Biotecnología, Campus de Cantoblanco, Madrid, Spain

‡ Present address: Klinik für Gastroenterologie und Hepatologie, UniversitätsSpital Zürich, Zürich, Schweiz

§These authors contributed equally to this work

#corresponding author

Phone: +49 511 220027 130

Fax: +49 511 220027 18508

E-mail: thomas.pietschmann@twincore.de

Running title: Function of epitope-tagged HCV p7

Word count, abstract: 226

Word count, text: 11,490
ABSTRACT

The hepatitis C virus (HCV) viroporin p7 is crucial for production of infectious viral progeny. However, its role in the viral replication cycle remains incompletely understood in part due to poor availability of p7-specific antibodies. To circumvent this obstacle, we inserted two consecutive HA-epitope tags at its N-terminus. HA-tagged p7 reduced peak virus titers ca. 10-fold and decreased kinetics of virus production compared to the wild type virus. However, HA-p7 rescued virus production of a mutant virus lacking p7, thus providing formal proof that the tag does not disrupt p7 function. In HCV-producing cells, p7 displayed a reticular staining pattern which co-localized with the HCV envelope glycoprotein 2 (E2), but also partially with viral non-structural proteins 2, 3 and 5A. Using co-immunoprecipitation, we confirmed a specific interaction between p7 and NS2, whereas we did not detect a stable interaction with core, E2 and NS5A. Moreover, we did not observe p7 incorporation into affinity-purified virus particles. Consistently, there was no evidence supporting a role of p7 in viral entry as an anti-HA antibody was not able to neutralize Jc1 virus produced from an HA-p7-tagged genome. Collectively, these findings highlight a stable interaction between p7 and NS2 which is likely crucial for production of infectious HCV particles. Use of this functional epitope-tagged p7 variant should facilitate the analysis of the final steps of the HCV replication cycle.
INTRODUCTION

Viroporins are small viral proteins able to form ion channels into membranes upon multimerization (49). They are encoded by a range of enveloped and non-enveloped viruses, encompassing members of the *Togaviridae*, *Retroviridae*, *Flaviviridae*, *Coronaviridae*, *Picornaviridae*, *Polyomaviridae*, *Papillomaviridae*, *Ortho- and Paramyxoviridae* families. Viroporins typically play an important role in virus production, although an involvement in virus entry, genome replication or pathogenesis has been reported in certain cases. Recently, much interest was raised by the assignment of viroporin function to HCV p7 protein (24, 45, 51, 55) and the relative new possibility to study its role in the whole viral replication cycle (34, 37, 58, 65, 70).

HCV is an enveloped positive-stranded RNA virus belonging to the *Flaviviridae* family. Its genome encodes a polyprotein that is cleaved into 10 functional proteins. Structural proteins, that is to say the capsid (core) and envelope (E1 and E2) proteins are encoded by the N-terminal part of the polyprotein whereas the replication machinery (nonstructural (NS) proteins 3 to 5B) is contained in its C-terminus. The p7 and NS2 proteins, located in between, are also classified as nonstructural proteins but are dispensable for viral RNA replication. However, it is now clear that both proteins are essential for virus production (34, 56, 58).

HCV p7 is a 63 amino acid membrane-associated polypeptide that is able to oligomerize, as shown in vitro or in cells (11, 24, 39, 50). Notably, the precise oligomeric state of p7 is still debated with both reports of hexameric (9, 24, 39) and heptameric (9, 11) species. Each p7 monomer consists of two transmembrane segments separated by a hydrophilic loop orientated toward the cytosol. This hairpin-like topology is stabilized by two fully conserved basic residues at position 33 and 35 of the p7 coding region. These residues are part of the cytoplasmic loop of p7 and they are essential for ion channel activity in vitro (25) as well as for production of infectious progeny in cell culture (58) and infectivity in vivo (56). Interestingly, there is evidence that HCV p7 has different functions in HCV production including a contribution to assembly of viral progeny as well as release of virus particles from infected cells (58, 67). Moreover,
interactions of p7 with other viral proteins have been reported suggesting that p7 ion channel activity and its functions during virus production may be regulated via specific protein-protein interactions (33, 53). Notably, the p7 ion channeling function can be (at least partially) rescued in trans by another viroporin (for instance the influenza virus M2 viroporin) (67). In contrast, using chimeric HCV constructs it was shown that at least some functions of p7 are highly virus- and genotype-specific, because virus genomes carrying p7 variants from other isolates were strongly attenuated in virus production (6, 59).

Regarding the ion channeling activity of p7, the ion specificity has not been fully established (9), although a preference for the channeling of cations has been reported (55). Recently, p7-mediated transfer of protons across intracellular membranes was observed (67). This property of p7 may preserve newly assembled virions from a premature conformational change of the glycoproteins during virus secretion (67). Presently, it is unclear if and how p7 protein interactions, like for instance between p7 and NS2 (33, 53) impact on HCV assembly, ion channel activity and release of viral progeny. Interestingly, genetic evidence (47) and localization studies (5) also suggested a possible interaction between core and p7, but so far no physical interaction was demonstrated.

Epitope-tagged p7 variants have been used to establish p7 topology (7, 31) and its subcellular localization. Using these constructs, a complex localization of p7 was revealed with prominent staining of the ER (7, 22, 27) but also labeling of mitochondria (22) and the plasma membrane (7). These observations suggested that p7-containing protein complexes may influence virus replication at various sites within infected cells. However, some caution is warranted since the function of these epitope-tagged p7 variants was not confirmed and localization studies of virus-producing cells with functional p7 are still lacking. Therefore, to facilitate subcellular localization of p7 in virus-producing cells and to explore the role of p7-containing viral complexes during HCV assembly and release we created a functional, epitope-tagged p7 and used this protein to assess subcellular localization, protein interaction and its incorporation into progeny particles.
MATERIAL AND METHODS

Antibodies

The mouse and rabbit anti-HA antibodies were respectively purchased from Covance (Emeryville, CA, product # MMS-101P) and Sigma (Steinheim, Germany, product # H6908). The mouse anti-β-actin and anti-Flag M2 antibodies were obtained from Sigma (# A2228 and # F1804), the rabbit anti-GM130 antibody from Epitomics (Burlingame, CA, product #1837-1), and finally the rabbit anti-calnexin antibody from Enzo Life Sciences (Lörrach, Germany, product # ADI-SPA-860). The mouse antibodies C7-50 (anti-core (46)), and 9E10 (anti-NS5A (37)), the human anti-E2 CBH23 antibody (35) and the sheep anti-ADRP antiserum (62) were generous gifts from D. Moradpour (University of Lausanne), C.M. Rice (Rockefeller University), S. Foung (Stanford University) and J. McLauchlan (Glasgow University), respectively. The mouse anti-NS2 6H6 antibody and rabbit anti-NS3 4949 antiserum were previously reported (1, 13), and were kindly provided by C.M. Rice and R. Bartenschlager, respectively.

The IgG1 control isotype antibody used in the immunoprecipitation assays was directed against a neuronal antigen and kindly provided by C. Erck (HZI, Braunschweig, Germany). All fluorescent secondary antibodies were supplied by Invitrogen (Karlsruhe, Germany). The peroxidase-conjugated secondary anti-mouse antibody used for Western blots was obtained from Sigma. Note that antibody dilutions used for Western blot or immunofluorescence are specified in the corresponding sections.

Plasmids

Plasmids pFK-Jc1 (52), pFK-Jc1Δp7half, pFK-Jc1/KR33,35QQ (58) and pFK-Jc1/FlagE2 (41) were reported previously and served as parental constructs for all other monocistronic full-length constructs. Note that a silent Xbal restriction site had been introduced at the beginning
of the p7 coding region of each construct so as to facilitate further cloning (58). For the trans-complementation assays, bicistronic helper replicons were based on the pFK PI-EI-NS3-5B/JFH1 construct that was previously described (6). The coding sequences for HA-p7, HA-L-p7, Sp-HA-p7, Sp-HA-L-p7 and Sp-HA-HA-L-p7 was engineered into the first cistron as previously described for the G-Luc, p7 and Sp-p7 controls (6). In all cases, individual mutations were introduced by standard PCR-based techniques and verified by sequencing. Further sequence information is available upon request.

Cell and virus culture

Huh-7.5 and Huh7-Lunet cells (4, 18) were grown at 37 °C and with 5 % CO2 in Dulbecco’s modified Eagle’s medium (DMEM, Invitrogen) supplemented with 2mM L-glutamine, non-essential amino acids, 100 U/ml of penicillin, 100 µg/ml of streptomycin, and 10 % fetal calf serum. The stable Huh-7.5/shApoE/HA-ApoE cell line (41) was cultivated in the same medium but with the addition of 5 µg/ml blasticidin and 0.75 mg/ml G418.

In vitro transcription and electroporation of HCV RNA into Huh-7.5 cells were performed as previously described (26). Viral supernatants were filtered through 0.45-µm-pore-size membranes. Virus infectious titers were determined by a limiting dilution assay as described elsewhere (TCID50 method (63)).

For the trans-complementation assays, Huh7-Lunet or Huh-7.5 cells were electroporated with 5 µg of Jc1Δp7half RNA and 5 µg of RNA corresponding to one of the helper replicons (see Figure 1A). Cell culture supernatants were harvested at different time points post-electroporation and titered for infectious particles on naïve Huh-7.5 cells.

Neutralization assays
The different virus preparations were obtained by electroporation of Huh-7.5 or Huh-7.5/shApoE/HA-ApoE cells with the relevant HCV RNA. Target Huh-7.5 cells were seeded at 10^4 cells per well in 96-well dishes one day before infection. Virus (around 30 focus forming units (ffu) /well) were mixed with appropriate amounts of antibody (mouse anti-Flag M2 or rabbit anti-HA antibody) and incubated for 1 h at 37°C prior to infection of target cells. Infections were performed in 35 µl/well for 3 h at 37°C and under gentle agitation. Cell supernatants were then replaced by fresh medium (100 µl/well) and the cells were further incubated for 40 h before fixation. Cell fixation, immunostaining and foci counting were performed as described elsewhere (63).

SDS-PAGE and Western Blot

SDS-PAGE (12 % acrylamide) and Western blotting were performed as previously described (26). Note that we routinely treat our protein samples in 1X Laemmli buffer (75 mM Tris-HCl pH 6.8; 0.6 % SDS, 15 % glycerol, 0.001 % bromophenol blue; 7.5 % β-mercaptoethanol) for 5 min at 98°C. However, we observed that this heating step impaired the detection of HA-tagged p7. As a consequence, samples devoted to p7 detection were only heated up to 37°C for 15 min, conditions that did not alter the detection of the other viral proteins tested. For Figure 2B, Huh-7.5 cells were electroporated with the relevant RNA as described above and seeded into 6-well dishes. At different time points post-electroporation, the confluent cells from one well were lysed in 100 µl Laemmli buffer, treated with Benzonase (Novagen) (1 µl per sample) for 15 mn at 37°C, and 15 µl were analysed by SDS-PAGE for protein expression.

Antibodies used for immunostaining were diluted as follows: anti-β-actin 1/1,000, anti-NS5A 1/1000, mouse anti-HA 1/1,000, anti-NS2 1/1,000, anti-core 1/1,000. As a secondary antibody, the peroxidase-conjugated anti-mouse antibody was diluted 1/20,000 except after 6H6 (1/2000 dilution) and the peroxidase-conjugated anti-rabbit antibody was diluted 1/25,000.
Immunoprecipitation of cell lysates

For each HCV RNA construct, 6x10^6 cells were electroporated with the relevant RNA and two third of the cells were seeded into one 10-cm-diameter tissue culture dish (the rest of the cells was used to control the electroporation efficiency and the virus titers released). The cells were harvested 48 h post-transfection by trypsinization and cell pellets were lysed in 230 µl lysis buffer (phosphate-buffered saline (PBS) supplemented with 1 % TritonX-100 and a protease inhibitor cocktail (Complete, Roche)). Out of these, 200 µl were used for immunoprecipitation with the mouse anti-HA or control isotype antibodies (100 µl each) and 20 µl were kept for the inputs (1/5 of the input). For each immunoprecipitation, 25 µl of protein G-agarose beads (Roche) were washed 3 times in PBS. Subsequently, washed beads were incubated with 3.3 µg antibody diluted in PBS for 2 h at 4°C under rotation. In parallel, cell lysates were pre-cleared on protein G-agarose in absence of antibody for 2 h at 4°C. Afterwards, pre-cleared cell lysates were added onto the washed antibody-bound beads and incubated overnight at 4°C under constant rotation, in PBS-1 % TritonX-100. Beads were then washed 5 times in PBS-1 % TritonX-100 (three times quickly, twice with a 5-min incubation time under rotation) and finally once quickly in water before protein elution in Laemmli buffer and SDS-PAGE analysis.

Immunoprecipitation of native secreted viral particles

Viral supernatants were produced as mentioned above for the neutralization assays. Cleared supernatants were concentrated by ultracentrifugation over a 20 % sucrose cushion in sterile PBS, in a Sorvall TH-641 rotor, for 4 h at 110,000 g (ThermoScientific Sorvall WX 80 ultracentrifuge). The supernatant was carefully decanted by inverting the ultracentrifuge tube and pipetting out the last drops at its rim. Subsequently, pelleted virus was recovered by addition of ca. 150 µl PBS per tube, incubation at 4°C for several hours or overnight and subsequent resuspension by pipetting. Concentrated virus stocks were stored at -80°C or used fresh. On average, virus stocks were concentrated 200 times in volume. 100 µl of concentrated
virus stocks were used per immunoprecipitation and 20 µl were kept for the inputs (1/5 inputs). For the anti-Flag immunoprecipitations, the M2 anti-Flag affinity matrix purchased from Sigma (# A2220) was used. For the anti-HA immunoprecipitations, we used protein G-agarose matrix linked with the mouse anti-HA antibody or the IgG1 control isotype (in each case, 3.3 µg antibody / immunoprecipitation, as indicated above). For each condition, 30 µl beads were used. Concentrated virus supernatants were incubated directly with the antibody-bound beads overnight at 4°C under rotation, in PBS. Beads were washed 6 times in PBS (four times quickly and twice with a 5-min incubation under rotation), proteins were eluted in 1X Laemmli buffer and analysed by SDS-PAGE and Western blot. Alternatively, core protein in culture fluid of transfected cells or after immunoprecipitation was quantified by using the ARCHITECT HCV Core AG test (Abbott, Wiesbaden, Germany) according to the instructions of the manufacturer.

Immunofluorescence

Huh-7.5 cells were seeded on coverslips and infected for 4 h at 37°C with undiluted supernatants harvested from Jc1/HA-HA-L-p7-transfected cells. Forty-eight hours post-infection, cells were washed in PBS and fixed in PBS-1 % paraformaldehyde, for 30 min at room temperature (RT). Cells were then permeabilized for 15 min in PBS-0.05 % TritonX-100. Afterwards, cells were incubated in blocking buffer (PBS complemented with 5 % goat serum (Sigma)) for 1 h at RT. Primary antibodies were diluted in blocking buffer (see above) and incubated with the cells overnight at RT. Relevant species-specific secondary antibodies (anti-mouse-A488 or A647, anti-rabbit-A488 or A647, anti-human-A546, anti-sheep-A447) were diluted 1/1,000 in blocking buffer and added onto the cells for 6 h at RT in the dark. Finally, cell nuclei were stained with DAPI (Invitrogen) diluted 1/3,000 for 1 min at RT and coverslips were mounted on glass slides using the Fluoromount-G (Southern Biotech, Birmingham, AL, product # 100-01). Between each step, cells were washed three times in PBS. For the lipid droplet staining, BODIPY 495/503 (Invitrogen) was diluted 1/1,000 and added together with the secondary anti-mouse antibody (for HA-tagged p7 detection). Mitochondria were stained by incubating live
cells with the Mitotracker RedCMXRos dye (Invitrogen), diluted at 100 nM in non-supplemented DMEM, for 45 min, just before cell fixation. In this particular case, cells were fixed in PBS-3 % paraformaldehyde, for 10 min at RT.

Primary antibody dilutions were as follows: mouse anti-HA, rabbit anti-HA, mouse anti-core C7-50 (46), mouse anti-NS2 6H6 (13) and mouse anti-NS5A 9E10 (37) were diluted 1/1,000, human anti-E2 CBH-23 (35) hybridoma supernatant 1/250, rabbit anti-NS3 4949 1/400 (1), sheep anti-ADRP (62) and rabbit anti-GM130 1/500, and finally rabbit anti-calnexin 1/300. Note that the mouse anti-HA antibody yielded a better staining quality as compared to the rabbit anti-HA antibody. However, we observed that both staining patterns colocalized similarly with E2 (data not shown).

Pictures were taken with an inversed confocal laser-scanning microscope (Olympus Fluoview 1000), using a 100 X magnification lens. The three channels (blue, green and red) were read in a sequential acquisition mode, with for each picture an average of 3 frames (Kalman N = 3). The pixel size of the original pictures was comprised between 70 and 100 nm.

Colocalization analysis

Intensity profiles were generated with the Fluoview 1000 viewer software (Olympus). Frequency scatter plots and Pearson’s colocalization coefficients (40) were obtained with the Mander’s coefficient plugin (Tony Collins and Wayne Rasban, Wright Cell Imaging Facility, Toronto, Canada) in ImageJ (Rasband, W.S., ImageJ, National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2004). Note that Pearson’s coefficients close to 1 are indicative of reliable colocalization.
RESULTS

HA-epitope tagged p7 rescues virus production of p7-deleted HCV genome

Studies of the HCV p7 ion channel have been limited by the restricted availability of efficient specific antibodies and the difficulties inherent to the small size of the protein. Various tagged p7 versions have previously been reported (7, 22, 27, 53) and have allowed p7 detection but none of these constructs proved to be functional when incorporated in the HCV genome, limiting the studies to artificial heterologous expression systems. The first aim of this study was to generate an epitope-tagged p7 that would be functional for HCV production. Importantly, while p7 is crucial for virus production (34, 58), its sequence also affects HCV polyprotein processing (8, 58). Therefore, genetic modification, and in particular epitope tagging of p7, can have pleiotropic effects on the HCV replication cycle. We recently described a trans-complementation system allowing the production of single-round infectious particles based on HCV subgenomic replicons packaged in helper cell lines that encode the remaining HCV proteins (57). Of particular interest, it is possible to restore HCV production of mutant HCV genomes harboring a deletion of half the p7 protein (Jc1Δp7half) by expressing the complete p7 protein together with its signal peptide in trans from a helper replicon (Figure 1A) (6, 57). This system is amenable to perform genetic modifications of p7; it also allows studying specifically the contribution of p7 in HCV production, thereby circumventing possible polyprotein processing defects due to genetic modification of the p7 sequence. We therefore used the trans-complementation system to test the capacity of tagged p7 variants to rescue virus production of the Jc1Δp7half mutant.

Several p7-encoding helper replicons were designed incorporating a single or double influenza hemagglutinin (HA) epitope at the N-terminus of p7 (Figure 1A). We additionally tested the insertion of a short linker (L) sequence (GGGGSG) between the tag and the p7 sequence, as well as the addition of the p7 signal peptide (Sp). The influenza hemagglutinin A (HA) epitope (YPYDVPDYA) (17, 66) was chosen for its small size (1.1 kDa), broad use and precise characterization, and for the availability of characterized HA-specific tools (antibodies and
peptides). As was previously reported, Jc1Δp7half was unable to produce infectious particles (6, 58), but virus production was restored by providing, via a helper replicon, p7 alone or together with its minimal signal peptide (the 17 C-terminal residues of the E2 glycoprotein), with a slightly higher efficiency in the latter case (Figure 1B) (6). Expression of the Gaussia luciferase instead of p7 served as a negative control for the assay and did not rescue virus release. Interestingly, addition of a HA tag at the N-terminus of p7 abrogated the trans-complementation, unless a linker sequence was inserted between the tag and p7. The HA-L-p7 and Sp-HA-L-p7 constructs trans-complemented the Jc1Δp7half genome with an efficiency comparable to the non-tagged p7-encoding constructs, although with delayed kinetics in virus production. Finally, we tested the addition of a double-HA tag at the N-terminus of p7, in order to enhance the affinity and specificity of HA-specific antibodies for the tagged protein. This double tag was inserted in combination with the linker peptide described above and the p7 signal peptide, as both features seemed to contribute to the optimal function of the single tagged or WT p7, respectively. Importantly, the double-tagged construct was as efficient as the single-tagged construct in restoring virus production Jc1Δp7half. Collectively, these results provide formal proof that HA-epitope-tagged p7 preserves the function of the protein in the course of virus production.

Of note, we also designed p7 constructs fused to the green fluorescent protein (GFP) and tested their ability to rescue virus production of the Jc1Δp7half mutant, in the same trans-complementation assay (data not shown). Our constructs contained a glycine-serine linker (GGGGSGGGGST) between the GFP and p7, and, in the case of a C-terminal tag, a point mutation (A63I, terminal p7 residue) intended to prevent the natural signal peptide cleavage between p7 and NS2. These constructs either failed to rescue virus production (N-terminal tag) or to maintain the GFP tag (C-terminal tag). Given these circumstances we did not pursue p7 localization with the described GFP-p7 fusion proteins and rather focused on the HA-tagged p7 constructs.
A double-HA-tagged p7 is functional in the full-length Jc1 system

Both single and double-HA-tagged p7 constructs were able to \textit{trans}-complement, with comparable efficiencies, the virus production of a p7-deficient HCV mutant (Figure 1). We next aimed to validate this result in the context of the full-length infectious Jc1 clone. A Jc1 genome incorporating a double HA-tag followed by a linker sequence at the N-terminus of p7 was created as illustrated in Figure 2A. This construct efficiently replicated after transfection in Huh-7.5 cells, as indicated by NS5A detection in the cell lysates (Figure 2B). Moreover, the tagged p7 could be readily detected in transfected cells, at the expected molecular size of around 10 kDa (7 kDa (p7) + 2x1.1 kDa (double HA-tag) + 0.4 kDa (linker)), with a HA-specific antibody (Figure 2B). P7 detection was optimal 48 h post-transfection and decreased thereafter, together with the NS5A signal, probably due to the cells reaching confluence in this assay setup. Last, the cell supernatant of transfected Huh-7.5 cells was titrated for infectious particles on naïve cells. High-titer infectious particles, reaching 10^5 TCID$_{50}$/ml, were produced by the HCV genome carrying the double HA-tag, confirming the functionality of this p7 variant as first deduced from the \textit{trans}-complementation assay. A ca. 10-fold decrease in titer and a slower kinetics of virus production were however observed as compared to the WT Jc1, indicating that the double-HA tag did affect to some extent p7 function in the HCV replication cycle. To verify that the p7 function could still be investigated in the context of a tagged-p7 virus, a derived construct harboring two extra point mutations (KR33,35QQ or KR,QQ as referred to in the figures) was also generated as a control. This double mutation has been described to prevent the ion channel activity of p7 and therefore hinder the p7 function in virus production (25, 56, 58, 67). Replication of the genome was verified by NS5A detection in the transfected cells (Figure 2B). Interestingly, the double mutation resulted in an increased electrophoretic mobility of the tagged p7 protein (Figure 2B, bottom panel), which could be explained by a change in the local charge of the protein and in the subsequent interaction with SDS in the gel. More importantly, as observed in the WT construct background (34, 58), the KR33,35QQ mutation resulted in a decrease in infectious titers (10- or 30-fold decrease on average at 48 and 72 h post-electroporation) in the context of the Jc1/HA-HA-L-p7 virus (Figure 2C). This suggested that the
The ion channel function of p7 was intact in the tagged p7 protein and that the Jc1/HA-HA-L-p7 construct could be used for functional studies of p7.

The possibility to tag p7 in a system that allows the whole replication cycle of HCV has, to our knowledge, not been reported yet. Therefore, we used this system to confirm previously reported observations on p7 function and to extend our knowledge on p7 localization and protein partners within the infected cells.

P7 colocalizes with E2 and non-structural proteins in the ER of HCV-infected cells

P7 was previously suggested to reside in the ER membrane (7, 22, 27, 53) but some reports also proposed its association with mitochondria (22, 25). We set out to investigate the localization of p7 in HCV-infected cells, using anti-HA antibodies. P7 was found in the cytoplasm of infected cells, following a typical reticular pattern, widespread in the cell but with an enhanced signal around the nucleus (Figures 3 and 5, HA panels). To delineate more precisely its subcellular localization, we stained p7 together with cellular organelles (Figure 3 and 4). As expected, the p7 staining overlaid with an ER-marker, the calnexin chaperone. However, no obvious co-localization was observed with a mitochondria-specific dye. Because of the proposed role of p7 for pH maintenance in the secretory pathway (67), we also stained the Golgi apparatus using GM130-specific antibodies as marker but could not detect any co-localization with p7. Finally, as lipid droplets are an important organelle for HCV assembly and concentrate several viral factors (2, 43), we stained them with either the BODIPY lipid dye or with an antibody specific for a lipid droplet-associated protein, ADRP (adipocyte differentiation related protein). In neither case could we detect an overlay between the p7 and lipid droplet stainings. Nevertheless, a fraction of the total p7 was detected in close proximity to the lipid droplets (see zoomed areas for BODIPY/p7 stained samples). The predominant ER localization of p7 was confirmed by immune gold labeling of HCV-transfected cells with an anti-HA antibody and observation by electron microscopy (data not shown).
In a second step, we assessed the localization of p7 respectively to other viral proteins (Figures 5 and 6). A striking co-localization was observed between p7 and the E2 glycoprotein, as reflected by the strong correlation of the two signal intensities (Figure 6). On the contrary, p7 and core showed clearly different staining patterns, with core enriched in one part of the cell while p7 was widely spread throughout the cytoplasm. Local spots of co-localized core-p7 signals were nevertheless detected, even though they accounted only for a fraction of the p7 protein (see zoomed area of Figures 5 and 6). Finally, p7 also co-localized with NS2, 3 and 5A, although not as strikingly as with E2.

P7 interacts with NS2 in HCV-infected cells

In the next step, we analyzed the possible viral interaction partners of p7 within the infected cells. A physical interaction between tagged p7 and tagged NS2 was shown after heterologous expression of tagged proteins (53) or in the HCVcc system (33), and is supported by genetic evidence (33, 52, 68). Moreover, genetic interactions reported between p7 and core (47) could indicate further viral interaction partners for p7. Jirasko et al. also reported the co-immunoprecipitation of p7 but also NS3, E2 and to a lesser extent NS5A together with NS2 (33), implying the formation of multi-molecular assembly complexes. Finally, the strong co-localization observed between HA-HA-L-p7 and E2 or NS2 in infected cells might suggest a direct interaction between these proteins (Figures 5 and 6). We tackled these issues by immunoprecipitating HA-HA-L-p7 from the lysates of HCV-producing cells. NS2 co-precipitated with HA-HA-L-p7 (Figure 7A), confirming the previous reports (33, 53). Interestingly, a second species corresponding to a protein of around 25-30 kDa was consistently co-precipitated and enriched in an anti-HA immunoprecipitation. It probably corresponded to an uncleaved p7-NS2 precursor, as this species could be detected independently by both an anti-HA and anti-NS2 antibody (data not shown).
Despite trying different immunoprecipitation conditions and detergents (Triton-X100 or n-dodecyl-β-maltosid), we were however unable to evidence a physical interaction between HA-HA-L-p7 and E2, NS5A or core (data not shown). The possibility of an interaction between p7 and core had been supported by the ability of p7 to redirect the core protein from the lipid droplets to the ER (5). It had also been suggested by the isolation of p7 mutations (position 776 in JFH-1 polyprotein or 26 in p7 sequence) compensating the assembly defect of core mutants (47). This compensatory effect was particularly strong for the p7 F776S rescue of the core 69-72A mutation. Because we could not evidence an interaction between core and p7, we tested whether the core 69-72A mutation could affect assembly indirectly by hindering the p7/NS2 interaction and whether the p7 compensatory mutation could compensate for such a defect. We therefore engineered the core 69-72A mutation, as well as the compensatory p7 F26S mutation (corresponding to the mutation designed as F776S in the original report (47)), in the Jc1/HA-HA-L-p7 construct, alone or in combination (Figure 7B). In this background, the core 69-72A mutation resulted in an over 100-fold decrease in released infectivity, a defect partially rescued by the p7 F26S mutation (3- to 7-fold increase). Noteworthy, these phenotypes were mild as compared to those described by Murray et al. (47), probably due to the slightly different parental construct used (Jc1/HA-HA-L-p7 in our case versus J6/JFH). In particular, we only observed a limited rescue of the core 69-72A phenotype by the p7 F26S mutation (3- to 7-fold increase respectively at 48 and 72 h post-transfection on an average of 6 to 7 independent experiments, among which only half showed a rescue). The moderate rescue is possibly due to the attenuating effect of the p7 F26S mutation in the context of the Jc1/HA-HA-L-p7 genome (3- to 6-fold decrease in infectivity at 48 and 72 h post-transfection, and delayed kinetics). We nevertheless tested the p7/NS2 interaction for these mutants (Figure 7C). All mutants in the context of the tagged-p7 genome expressed NS2 and p7 at comparable levels 48 hours post-transfection. Note that, similar to the p7 KR33,35QQ mutant, the p7 F26S mutant exhibited a slightly increased electrophoretic mobility. Moreover, the p7-NS2 precursor was detected for all tagged p7 constructs (see above). More importantly, the core 69-72A mutation did not significantly alter the p7/NS2 interaction, nor did the p7 rescue mutation. Therefore, the
assembly defect associated with the core 69-72A mutation does not seem to be due to a decreased p7/NS2 interaction.

No evidence for p7 incorporation in HCV particles

Finally, we addressed the controversial issues of p7 possible incorporation in the secreted viral particle and role in entry. As described above, the HA-HA-L-p7 protein is readily expressed in HCV-producing cells (Figure 2B) and capable, albeit with a slightly lower efficiency than the WT p7, to support the production of virus particles. Therefore, if p7 was incorporated in the viral particle, it is likely that the epitope-tagged p7 would also be incorporated, with the N-terminal tag facing the outside of the particle.

Two approaches were therefore used to test the presence of p7 in the viral particle. First of all, we attempted to neutralize HCV entry with a HA-specific rabbit polyclonal antibody or with a Flag-specific antibody as a control (Figure 8A). For this experiment, we produced viruses from different constructs: (i) untagged WT Jc1, (ii) Jc1/HA-HA-L-p7 described above, (ii) Jc1/FlagE2, with a Flag epitope in E2 preceding HVR1 (42), or (iii) the double-tagged Jc1/FlagE2/HA-HA-L-p7. We also produced Jc1 virus in cells expressing HA-tagged ApoE (41). Because ApoE is incorporated in viral particles and plays a role in entry (10, 32, 42), we used the Jc1/HA-ApoE virus as a control for anti-HA antibody-mediated neutralization. In this setup, the anti-HA antibody was not able to neutralize the infectivity of viruses produced from the Jc1/HA-HA-L-p7 or the Jc1/FlagE2/HA-HA-L-p7 construct, while a weak but reproducible neutralization was achieved against Jc1 virus incorporating HA-tagged ApoE (Figure 8A, left panel). As a control, the anti-Flag antibody efficiently neutralized virus particles incorporating a Flag-tagged E2 protein (42), including the virus particles generated from a double tagged Jc1/FlagE2/HA-HA-L-p7 genome (Figure 8A, right panel). Therefore, the anti-HA antibody was in principle able to neutralize virus entry (see Jc1/HA-ApoE) but had no effect on virus produced from the Jc1/FlagE2/HA-HA-L-p7 construct, the latter being however efficiently neutralized by an anti-
Flag antibody. As a conclusion, we were unable to demonstrate a role of p7 in HCV entry or the incorporation of p7 in the virus particle by antibody-mediated neutralization.

Secondly, we tested the direct detection of HA-HA-L-p7 in the cell culture fluid of HCV-producing cells and in affinity purified HCV particles (Figure 8B). To do this, we used the same viruses as for the neutralization assay, namely untagged Jc1, Jc1 with HA-tagged p7 and/or Flag-tagged E2, and finally Jc1 incorporating HA-ApoE (see above). Importantly, we were never able to detect tagged-p7 in concentrated infectious cell supernatants (data not shown). Furthermore, we could detect the core protein (Jc1/FlagE2 and Jc1/FlagE2/HA-HA-L-p7 viruses) but no tagged-p7 (Jc1/FlagE2/HA-HA-L-p7 virus) in Flag-purified virus particles (see anti-Flag immunoprecipitations, and white arrowheads in left panel). Finally, we attempted to purify HA-tagged proteins from the cell supernatant and investigated the co-precipitation of core protein, as a marker for the virion, using Western blots and a highly sensitive core-specific ELISA (Figure 8B, see anti-HA immunoprecipitations in left and right panel). While we could co-precipitate core with a virus incorporating HA-ApoE (see the white arrowhead in the left panel), this was not the case with virus particles produced from a HA-tagged p7 genome (Jc1/HA-HA-L-p7 or Jc1/FlagE2/HA-HA-L-p7). Altogether, we had no proof for p7 secretion, and could neither detect p7 in affinity-purified viral particles, nor immunoprecipitate viruses produced from an HA-tagged p7 genome with an anti-HA antibody. Thus, consistently with the functional neutralization data, this biochemical approach gave no evidence for p7 incorporation in the virus particle.

DISCUSSION

HA-tagged p7, a new tool to study p7 function and HCV production

Several tagged version of p7 were previously published (7, 22, 27, 53, 60) but none was shown to be compatible with virus production. The use of these constructs was therefore limited to single-protein (7, 53) or at the best replicon-driven (27) expression systems.
Moreover, because p7 is small and membrane-integral, it is poorly immunogenic, and therefore antibodies against this polypeptide are rare. To our knowledge, the only reported anti-p7 antibodies are strain-specific polyclonal antisera raised against the N- or C-terminal residues of p7 (22-24). For these reasons, the immunological detection of p7 in a relevant HCV-infection system is still challenging (54, 59). It therefore remains extremely difficult to track p7 and p7-containing protein complexes during HCV assembly and release. Likewise, purification of p7 and its interacting partners from HCV-producing cells, or even more so, to investigate p7 incorporation into secreted viral particles was difficult.

In this work, we created new versions of tagged p7. Our attempts to produce virus particles from constructs encoding GFP-tagged p7 were not successful (data not shown). However, addition of a double-HA tag at the N-terminus of p7 permitted indeed production of infectious virus in a trans-complementation setup but also in the full-length Jc1 infectious clone. A nearly one-log decrease in infectious titers was nevertheless observed in the context of the Jc1 clone (Figure 2C). A more detailed characterization of the tagged HCV genome would be needed to fully understand this defect. However, our data suggests that the specific role of p7 in assembly and release of HCV was, despite the tag, if not intact, at least mostly preserved. First of all, the tagged p7 constructs could rescue virus production in a trans-complementation system to the same extent as untagged p7, although with delayed kinetics (Figure 1). We chose to use this system as it allows the specific investigation of HCV assembly and release (together with entry), independently of the upstream steps of HCV replication cycle. Indeed, the modified p7 sequence is provided in trans, whereas all determinants for HCV replication, polyprotein translation and processing are encoded in cis by the subgenomic replicon (in our case the Jc1Δp7half construct), and therefore stable in the assay. In a full-length Jc1 genome, p7 tagging also resulted in slower kinetics of infectious virus production, but additionally yielded lower infectious titers. Therefore, we hypothesize that p7 tagging might affect a step in the HCV replication cycle that was disregarded in the trans-complementation system, namely replication, polyprotein translation or processing. Because p7 and the neighboring E2 and NS2 proteins are not major actors for virus RNA replication (38) but p7 sequence is a determinant for
polyprotein processing (8, 58), we favored this last hypothesis. Consistently, we detected by Western blot a p7-NS2 precursor in cells transfected with the Jc1/HA-HA-L-p7 construct (Figure 7A and C). This species was indeed stained independently by anti-HA or anti-NS2 antibodies (data not shown), was enriched in anti-HA immunoprecipitates, and had an apparent molecular size of 25-30 kDa protein, consistent with a p7-NS2 precursor (ca. 10 + 21 kDa). Importantly, such a species was not detected in Jc1-transfected cells with an anti-NS2 antibody, pointing at a specific defect of HCV polyprotein processing in our HA-tagged construct. Such a defect is intriguing because the tag was inserted at the N-terminus of p7 whereas the p7-NS2 cleavage occurs at its C-terminus. It could however explain the lower infectious titers obtained with the tagged construct, either through a decreased availability of fully-processed p7 or NS2 proteins (the latter could however not be evidenced in our Western Blot analysis, Figure 7A and C), or via a slight dominant negative effect of a non-functional p7-NS2 precursor. Last, we indirectly tested the ion channel function of tagged p7 by mutating the dibasic motif in the cytosolic loop of p7 (KR33,35QQ mutation) in the context of our tagged-p7 genome. These residues were previously shown in biochemical assays to be crucial for p7 ion channeling (25), but also in infectious systems to be important for p7 role in virus production (6, 34, 56, 58) and its capacity to regulate the intravesicular pH along the secretory pathway (67). Because the KR33,35QQ mutation impaired virus production of the HA-tagged genome (Figure 2C), we reasoned that the HA-tagged p7 maintained an ion channel activity. As shown in Figure 7, tagged p7 also kept its ability to interact with NS2 (33), suggesting that the protein-protein interaction function of p7 was also preserved. Although we cannot exclude the loss of the tag on a fraction of the p7 proteins, the interaction of HA-tagged p7 with NS2, together with its colocalization with E2 strongly support the specific involvement of HA-tagged p7, rather than a cleaved p7 form, in HCV replication cycle.

Finally, our data showed the possibility to use the double HA-tag to detect p7 by Western blotting (Figure 2B) and immunofluorescence in HCV-producing cells (Figures 3 to 6) and to immunoprecipitate p7 and associated proteins (Figure 7), with a good specificity and sensitivity in all cases. Although we did not test the double-HA tag with p7 proteins derived
from other isolates and genotypes, the tag position at one end of the protein and its separation from p7 by a linker sequence should increase its compatibility with a variety of p7 sequences.

Localization of p7 in HCV-infected cells and interaction with viral partners

The localization of p7 in HCV-infected cells remains unknown (59), as previous studies were restricted to heterologous expression systems (7, 22, 27, 54). Most reports supported the ER retention of p7 (7, 22, 27, 53). This is coherent with the incorporation of p7 in assembly complexes, which are believed to gather at the ER membrane, in close proximity to lipid droplets (33, 53). A possible localization to the mitochondria was however also proposed (22, 25). This would not be an unprecedented situation as other viroporins or viral proteins can localize to mitochondria and alter their function (12, 19, 48, 61). Finally, p7 might protect pH-sensitive intracellular virions from premature fusion by equilibrating the pH of acidic intracellular vesicles (67). This would suggest a possible localization of p7 along the secretory pathway, and in particular in the Golgi apparatus where the virus particle is thought to traffic before secretion. The localization of p7 in HCV-producing cells is therefore an open and crucial question to understand the function of p7.

Our data supported a cytoplasmic distribution of p7 in HCV-producing cells, with a typical reticular pattern of p7, including staining of the nuclear envelope (Figure 3). P7 signal colocalized with an ER marker but little colocalization was observed with mitochondria. Also, p7 was not detected in the Golgi apparatus. Consistently, p7 colocalized nearly perfectly with the E2 envelope protein, with signal intensities of the two stainings being strongly correlated (Figure 6). Of all cellular markers and viral proteins tested, Pearson’s and Mander’s coefficients were the highest for the p7/E2 colocalization (Figures 4, 6 and data not shown). Finally, colocalization was also observed with NS2, NS3 and NS5A proteins, while p7 and core signals only overlapped locally.
This localization of p7 in the ER and its colocalization with E2 and NS2 reflect the position of p7 in the viral polyprotein. This also further endorses the incorporation of p7 in multimolecular assembly complexes, in particular with NS2 and the glycoproteins (33, 53). In this respect, the p7/NS2 interaction, already reported in the HCVcc and in heterologous expression systems (33, 53), was confirmed by immunoprecipitation of p7 (Figure 7A). However, no interaction was detected between p7 and other viral proteins, for instance E2, core or NS5A. It was published that p7, E2, NS3 and to a lesser extent NS5A could be co-purified with NS2 in HCV-producing cells (33). Nevertheless, there was no proof that all proteins were incorporated together within the same assembly complexes. The architecture of assembly complexes might be more complicated and gather several types of complexes (for instance a p7/NS2 complex and an NS2/glycoprotein complex) with some proteins, such as NS2, being able to sequentially interact with one complex or another, without a need for a direct or indirect interaction between all proteins. More generally, interactions between p7 and other viral proteins might be indirect and too weak to be detected in our assay conditions, involve only a small fraction of the total p7 protein, or be simply too transient to be evidenced. It is also possible that the double HA-tag becomes poorly accessible once p7 is incorporated in a multiprotein complex. Interestingly, core mutants defective in assembly could be rescued by p7 mutations (see (47) and Figure 7B). Moreover, in absence of other viral proteins, p7 is able to relocate the core protein from the lipid droplet to the ER surface (5). Finally, we believe that p7 is important for RNA encapsidation and for capsid envelopment (J. Gentzsch and T. Pietschmann, submitted for publication). For these reasons, we were particularly interested in testing the core/p7 interaction in our system. Since we could not detect any interaction between these two partners, we investigated whether the assembly-impairing core 69-72A mutation, which is rescued by the p7 F26S mutation, could act indirectly by modulating the p7/NS2 interaction. This did not seem to be the case as individual or double mutants exhibited a comparable p7/NS2 interaction (Figure 7C). In conclusion, it seems that NS2 is the main interacting partner of p7 while p7 co-localizes most strikingly with E2. Transient of weak interactions might occur
between p7 and other proteins, or NS2 might be sufficient to pull together p7 and other assembly factors, by interacting sequentially with them.

Is p7 incorporated in the viral particle?

Finally, the tagged p7 construct was used to test the presence of p7 in the secreted viral particle, an issue that remains controversial. Most other viroporins are not incorporated in the virion (for instance HIV Vpu, alphavirus 6K and Jc virus agnoprotein are excluded from the virion (20, 30)). However, in the case of influenza virus, the M2 viroporin is present on the viral particle and plays an important role in entry (reviewed in (28, 36)). What is more, the delayed and incomplete cleavage of the HCV E2-p7-NS2 precursor (15, 21, 44, 58) could theoretically favor the incorporation of p7 alone or as a precursor with E2 and eventually NS2, in the secreted HCV viral particle. Note that the related pestiviruses also encode a p7 viroporin that is crucial for virus production. However, neither p7 nor p7-containing precursors were detected in BVDV (bovine viral diarrhea virus) or CSFV (classical swine fever virus) virions (16). Furthermore, whereas an E2-p7-NS2 precursor was readily detected in JFH-1-producing cells with an anti-E2 antibody, no such precursor was found in the HCV virion (64). To our knowledge, the only indirect hint for a possible role of p7 in HCV entry comes from inhibitor studies using amantadine, rimantadine, NN-DNJ or GSK2, all of which presumed p7 inhibitors (23). Addition of these drugs during cell entry, reduced HCV infection, possibly by blocking p7 function(s) during virus entry or uncoating. However, the observed effects were moderate and it is difficult to exclude if these drugs also perturb cellular factors thus indirectly impeding HCV infection.

In addition to this, it is clear thanks to the HCV pseudoparticle system that HCV glycoproteins can mediate by themselves virus entry (3, 14, 29). Whether HCVpp truly mimic entry of the genuine viral particle or of HCVcc is however certainly disputable since HCVpp are built on a retroviral backbone and typically produced in non-hepatoma cells. Undoubtedly, HCVpp cannot recapitulate the HCV uncoating as they contain a retroviral capsid and genome,
and fusion itself might be biased by the HCVpp structure and lipid composition. It can therefore not be excluded that p7 might be dispensable for HCVpp entry but necessary for HCVcc entry, at a late stage, to mediate fusion or uncoating, as shown for the influenza M2 protein (36).

Further insight into the question of p7 incorporation in the virion was provided by the characterization of p7 mutants. In particular, we previously showed that the p7 KR33,35QQ mutant, although impaired in assembly, had a specific infectivity similar to the WT Jc1 virus (58). The report by Wozniak et al. goes along the same line (67). In brief, the authors used the KR33,35AA mutation which, in the context of genotype 1a p7 (chimeric HJ3-5 virus) totally abrogates infectious virus production. In this context, virus particles could be rescued by bafilomycin-treatment of virus-producing cells and these particles were able to infect naïve cells. These are strong indications that p7 is crucial for assembly but not important for virus entry.

An assembly-competent virus encoding a tagged-p7 protein is an interesting tool to tackle this issue from a novel and more direct angle. We therefore used several new approaches to test p7 incorporation in the virion and its possible role in entry. First, we tried to directly detect p7 in the supernatant of HCV-producing cells, using the anti-HA antibody in Western Blot. Despite a good affinity of this antibody for p7, as shown in cell lysates (Figure 2B), we were never able to detect p7 in the concentrated infectious cell supernatant, or in affinity-purified Flag-tagged HCV particles (Figure 8B) (42). We also tried to immunoprecipitate p7 from the concentrated infectious cell supernatant using an anti-HA antibody and tested the co-precipitation of the core protein, as a marker for viral particles (Figure 8B). In this case, the final readout is based on core protein detection. Core stoichiometry in the virion is likely to be higher than p7 and, moreover, its detection can be performed by a highly sensitive ELISA. For these reasons, the anti-HA immunoprecipitation assay is likely to be more sensitive than the anti-Flag immunoprecipitation. However, whether we used a Western blot or core ELISA detection, we were not able to specifically detect the core protein in an anti-HA immunoprecipitate.
Finally, an anti-HA antibody failed to neutralize the infectivity of virus particles produced from a p7-tagged genome. In principle however, the same anti-HA antibody was able to neutralize virus particle infectivity, as evidenced by the neutralization of a control virus incorporating HA-tagged ApoE. Also, a double-tagged virus, incorporating a Flag epitope at the N-terminus of E2 and a double HA epitope at the N-terminus of p7, could be neutralized by an anti-Flag antibody but not by an anti-HA antibody.

Obviously, these pieces of data cannot rule out the incorporation of p7 in the virus particle or its role in entry. Regarding the neutralization assay, p7 could be incorporated in the virus particle and have no role in entry, or have a role in entry that cannot be blocked by the anti-HA antibody used. The negative immunoprecipitation results could also be attributed to an insufficient sensitivity of the method. As a comparison, despite the important role of M2 in influenza virus entry, the virion only harbors a few copies of the viroporin (14 to 68 copies per virion), that is to say 10 to 100 times less than the HA envelope protein (500 to 1200 copies) (69). Given these data, it is likely that production of larger stocks of affinity-purified viruses (for instance using the Jc1/Flag E2 construct) coupled to more sensitive detection methods, or attempts to immunoprecipitate HA-tagged p7 from large-scale virus preparations will be needed in the future to answer more conclusively this question.

In conclusion, the generation of an infectious HCV clone containing an epitope-tagged p7 allowed us to analyze the subcellular localization of p7 in HCV-infected cells and to examine its interacting partners as well as its possible incorporation in the viral particle. We believe that this construct will be useful in the future to further precise these issues, in the context of the WT virus but also in the context of assembly mutants or pharmacological inhibition of assembly.

Acknowledgments
We are grateful to Rajesh Kolli and Mathias Müsken for their advice on confocal microscopy, to François Penin for his advice on the choice of linker sequences and to Regina Raupach for technical assistance. We also thank Ralf Bartenschlager, Christian Erck, Steven Foung, John McLauchlan, Darius Moradpour and Charles M. Rice for providing us with antibodies. Finally, we would like to acknowledge all members of the Institute of Experimental Virology at Twincore, for valuable discussions. This work was funded by an Emmy Noether-fellowship to T.P. (PI 734/1-1) provided by the Deutsche Forschungsgemeinschaft and by a grant of the Initiative and Networking Fund of the Helmholtz association SO-024 to TP.
References

Figure legends

FIG.1. HA-tagged p7 can rescue virus production of a p7-defective virus by trans-complementation. (A) Schematic representation of the HCV assembly-deficient p7-mutant genome (Jc1Δp7half) and the helper replicons used in this study. J6-derived genome segments are depicted in grey, JFH1-portions are shown as open boxes. The 5’- and 3’-non-translated regions are given as black bars. (B) Infectious titers released by co-transfection of the Jc1Δp7half and the helper replicon in Huh-7.5 cells. Titration was performed using the TCID₅₀ method at 24, 48 and 72 h post-electroporation (white, dark grey and light grey bars, respectively). Representative results of 3 independent experiments with error bars representing the standard deviations are shown. The background level of the limiting dilution assay is indicated as a black line.

FIG.2. HA-tagged p7 is functional in the full-length infectious Jc1 virus. (A) Schematic representation of the Jc1/HA-HA-L-p7 construct. (B) Western blot analysis of NS5A, p7 (HA antibody) and actin expression in cell lysates at 24, 48 or 72 h post-electroporation with the mentioned construct. (C) Infectious titers released by transfection of the mentioned constructs. Titration was performed using the TCID₅₀ method at 24, 48 and 72 h post-electroporation (white, dark grey and light grey bars, respectively). Representative results of 3 independent experiments with error bars representing the standard deviations are shown. The background level of the limiting dilution assay is indicated as a black line.

FIG.3. Subcellular localization of p7 relatively to cellular organelles. Huh-7.5 cells were fixed 48 h post-infection with Jc1/HA-HA-L-p7. For each staining combination, representative confocal images are shown in grey for the individual green and red channels, and in color for the merge (green, red and blue channel, the latter representing the DAPI staining of the cell nuclei). Zoomed areas highlighted in the merged picture are depicted in the right column. Co-localization analysis of these pictures (profile intensity on a section of the picture, intensity scatter plot, and Pearson’s coefficient) can be found in Figure 4.
FIG. 4. Co-localization analysis of tagged p7 with cellular markers. Analysis was performed on the pictures showed in Figure 3. The middle column shows signal intensity profiles for green, red and blue (DAPI) channels along a section of the picture that is depicted in the left column. The right column represents frequency scatter plots of the intensity registered in the red and green channel. Note that this analysis was gated on the infected cells. Moreover, the HA signal was always shown on the x axis, whereas the y axis corresponds to the intensity of the second marker (e.g. Mitotracker, BODIPY, etc). Individual dots in the scatter plot correspond to single pixels of the original picture. The color code highlights the frequency of dots present in a certain region of the scatter plot (from blue to yellow and white with increasing frequencies). The Pearson’s r coefficient of co-localization is indicated in the top right corner of the plot.

FIG. 5. P7 co-localizes with E2 and non-structural proteins in infected cells. Huh-7.5 cells were fixed 48 h post-infection with Jc1/HA-HA-L-p7. For each staining combination, representative confocal images are shown in grey for the individual green and red channels, and in color for the merge (green, red and blue channel, the latter representing the DAPI staining of the cell nuclei). Zoomed areas highlighted in the merged picture are depicted in the right column. Co-localization analysis of these pictures (profile intensity on a section of the picture, intensity scatter plot, and Pearson’s coefficient) can be found in Figure 6.

FIG. 6. Co-localization analysis of tagged p7 with other viral proteins. Analysis was performed on the pictures showed in Figure 4. Please see the legend of Figure 4 for the explanations relative to the different graphs. Note that, contrary to Figure 4, the scatter plot analysis and Pearson’s coefficient calculation were performed on the whole picture as both markers analyzed were only detected in infected cells.

FIG. 7. P7 interacts with NS2 in HCV-producing cells. (A) NS2 co-immunoprecipitates with HA-tagged p7. Huh-7.5 cells were electroporated with Jc1 (-) or Jc1/HA-HA-L-p7 RNA (+). At 48 h
post-transfection, cells were lysed and immunoprecipitations with an anti-HA antibody or with a
control isotype were performed. HA-tagged p7 and NS2 were detected in cell lysates (inputs)
and in immunoprecipitates by Western blotting. In brief, proteins were revealed with a mixture
of anti-HA and anti-NS2 mouse antibodies followed by detection with an anti-mouse-HRP
conjugate. The asterisks correspond to the immunoglobulins used for the IPs (from top to
bottom, partially dissociated immunoglobulins, heavy and light chains). Note that, to improve
p7 detection, Laemmli-containing protein samples were only heated up to 37°C, which probably
explains that part of the immunoglobulins heavy and light chains remained undissociated. (B)
The p7 F26S mutation partially compensates for the core 69-72A defect in virus production.
Virus supernatants were titered using the TCID$_{50}$ method at 24, 48 and 72 h (white, dark grey
and light grey bars, respectively) after electroporation with the mentioned constructs.
Constructs are numbered accordingly to panel C. The figure represents the average of 4 to 7
independent experiments with error bars corresponding to the standard deviations. The
background level of the limiting dilution assay is indicated as a black line. (C) The core 69-72A
mutation does not affect p7/NS2 interaction. Immunoprecipitations and Western blot were
performed as in panel A, with lysates of cells electroporated with the constructs 1 to 6 (see
panel B).

FIG. 8. Absence of evidence for p7 incorporation in the HCV virion or role in entry. (A) The
viruses given above were incubated with anti-HA (left panel) or anti-Flag antibodies (right panel)
prior to infection of cells. At 40 h post-infection, infectivity was evaluated by focus forming unit
assay. The residual infectivity relative to infectivity in the absence of antibody is shown. Mean
values of 3 independent experiments, each containing 3 replicates including SDs are shown. (B)
Huh-7.5 cells were transfected with Jc1 (lane 1), Jc1/HA-HA-L-p7 (lane 2), Jc1/FlagE2 (lane 3) or
Jc1/FlagE2/HA-HA-L-p7 (lane 4) RNA. As a further control, Jc1 was prepared from Huh-7.5 cells
expressing HA-ApoE (lane 5). Concentrated supernatants of the electroporated cells were either
directly lysed and loaded on the gel (left part of the gel) or subjected to immunoprecipitation
with anti-HA antibodies or the relevant control isotype (middle) or an anti-Flag affinity matrix
(right part of the gel). Inputs and immunoprecipitated proteins were analysed by Western blot for p7 (anti-HA antibody, no detected signal), ApoE (anti-HA antibody) and core (C7-50 antibody) content. White arrowheads indicate detection of the core protein in the immunoprecipitates. The quantity of HCV core protein in each sample was also determined using a core specific ELISA. Mean values including the standard deviations of three independent experiments performed with independent virus stocks are given.
A) Helper replicon

Jc1 Δp7^{half}

Helper replicon

p7
Sp-p7
HA-p7
HA-L-p7
Sp-HA-p7
Sp-HA-L-p7
Sp-HA-HA-L-p7
GLuc

B) TCID_{50}/ml

24 h
48 h
72 h

p7
Sp-p7
HA-p7
HA-L-p7
Sp-HA-p7
Sp-HA-L-p7
Sp-HA-HA-L-p7
GLuc
A

\[\text{YPYDVPDYA YPYDVPDYA GGGGSG} \]

\begin{align*}
\text{5'} & \quad \text{C E1 E2 E3} \\
\text{p7} & \quad \text{4A 4B 5A 5B} \\
\text{3'} & \quad \text{Jc1/HA-HA-L-p7}
\end{align*}

B

<table>
<thead>
<tr>
<th>Treatment</th>
<th>24 hpt</th>
<th>48 hpt</th>
<th>72 hpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jc1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jc1/HA-HA-L-p7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jc1/HA-HA-L-p7/KR,QQ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mock transfected</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **anti-NS5A**:
 - Jc1: Low expression
 - Jc1/HA-HA-L-p7: Moderate expression
 - Jc1/HA-HA-L-p7/KR,QQ: High expression
 - Mock transfected: Low expression

- **anti-HA**:
 - Jc1: Low expression
 - Jc1/HA-HA-L-p7: Moderate expression
 - Jc1/HA-HA-L-p7/KR,QQ: High expression
 - Mock transfected: Low expression

- **anti-β-actin**:
 - Jc1: Low expression
 - Jc1/HA-HA-L-p7: Moderate expression
 - Jc1/HA-HA-L-p7/KR,QQ: High expression
 - Mock transfected: Low expression

C

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>24 h</th>
<th>48 h</th>
<th>72 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jc1</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>Jc1/HA-HA-L-p7</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>Jc1/HA-HA-L-p7/KR,QQ</td>
<td>10^6</td>
<td>10^6</td>
<td>10^6</td>
</tr>
<tr>
<td>Mock transfected</td>
<td>10^4</td>
<td>10^4</td>
<td>10^4</td>
</tr>
</tbody>
</table>
A

![Graph showing infectivity percentage against anti-HA antibody dilution and anti-Flag antibody concentration.](image)

B

![MW (kDa) and core amount (fmol) graphs.](image)