This is a pre- or post-print of an article published in
Cerebrospinal fluid tau levels are a marker for molecular subtype in sporadic Creutzfeldt-Jakob disease
Cerebrospinal fluid tau levels are a marker for molecular subtype in sporadic Creutzfeldt-Jakob disease

André Karch
andre.karch@helmholtz-hzi.de

Peter Hermann
peter.hermann@med.uni-goettingen.de

Claudia Ponto
claudia.ponto@med.uni-goettingen.de

Matthias Schmitz
matthias.schmitz@med.uni-goettingen.de

Amandeep Arora
amandeep.arora@med.uni-goettingen.de

Saima Zafar
saifa.zafar@med.uni-goettingen.de

Franc Llorens
franc.llorens@gmail.com

Annika Müller-Heine
karch.annika@mh-hannover.de

Inga Zerr
ingazerr@med.uni-goettingen.de

1 Epidemiological and Statistical Methods (ESME), Department of Epidemiology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany

2 National Reference Center for TSE, Clinical Dementia Center, University Medical School Göttingen, 37075 Göttingen, Germany

3 German Center for Infection Research (DZIF), Hannover-Braunschweig site, 30625 Hannover, Germany

4 German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany

5 Institute of Biostatistics, Hannover Medical School (MHH), 30625 Hannover, Germany

Corresponding author:
Dr. André Karch
Department of Epidemiology
Helmholtz Centre for Infection Research
Inhoffenstr. 7
2838124 Braunschweig, Germany
Tel.: +49 531 6181 3113
Email: andre.karch@helmholtz-hzi.de
Abstract:

The molecular subtype of sporadic Creutzfeldt-Jakob disease (sCJD) is an important prognostic marker for patient survival. However, subtype determination is not possible during life-time. Since the rate of disease progression is associated with the molecular subtype, this study aimed at investigating if total tau, a marker of neuronal death, allows pre-mortem diagnosis of molecular subtype when codon 129 genotype is known.

296 sCJD patients were tested for their cerebrospinal fluid total tau level at time of diagnosis and were investigated for their sCJD subtype post-mortem.

There was a significant association between tau levels and the prion protein type in patients with codon 129 MM (p<0.001), MV (p=0.004) and VV (p=0.001) genotype. ROC analyses showed AUC values of 0.76 to 0.80 for the different genotypes indicating a good diagnostic validity of the test.

Total tau can be used as a diagnostic test for the assessment of prion protein type when codon 129 genotype is known. It provides valuable information for physicians and nexts of kin about the further course of disease.

Highlights:

- To date, subtype determination in Creutzfeldt-Jakob disease is only possible post-mortem
- We investigate if total tau can be used as a subtype-specific marker for Creutzfeldt-Jakob disease
- In our study we show that total tau has a good diagnostic validity when codon 129 genotype is known
- Thus, we propose the combination of total tau and codon 129 genotype as a new test for molecular subtype
- This approach provides valuable information for caretakers about the further course of disease

Keywords: Creutzfeldt-Jakob disease, tau, biomarker, subtype, neurodegeneration
Introduction

Creutzfeldt-Jakob disease (CJD) is the most common human prion disease affecting about 1 in 1,000,000 individuals per year (Heinemann, et al., 2007). There are genetic and iatrogenic causes of CJD; however, the majority of patients suffer from a sporadic form of Creutzfeldt-Jakob disease (sCJD) (Kovacs, et al., 2005, Puoti, et al., 2012). Although sporadic CJD is in any case fatal, there are considerable differences in survival between patients. These differences have major implications for the patient as rapid action needs to be taken by both the treating physicians and the families in order to ensure an appropriate medical and nursing care. One prognostic marker for disease progression and patient survival is the patient's molecular subtype (MM1, MM2, MV1, MV2, VV1, VV2) which is compound of two different kinds of information: 1) codon 129 genotype (MM, MV or VV) and 2) prion protein type (PrP type 1 or 2) (Parchi, et al., 1996, Puoti, et al., 2012). While codon 129 genotype is easily available by genetic testing during life-time, information on PrP type can only be obtained by neuropathological evaluation which is mostly limited to post-mortems.

The prognostic ability of the molecular subtype is attributed to the different rates of disease progression associated with the subtypes, which might, amongst others, reflect different intensities of neuronal degeneration. Cerebrospinal fluid (CSF) levels of one classic marker of neurodegeneration, protein 14-3-3, have been shown to differ between molecular subtypes when using a 14-3-3 ELISA (Gmitterova, et al., 2009). However, as 14-3-3 is routinely assessed in a binary way by Western Blot (resulting in high positivity rates for all subtypes and no detection of quantitative differences), 14-3-3 has not been adopted in clinical practice in order to differentiate between subtypes during life-time. Total tau is another marker of neuronal degeneration that is widely available and is routinely measured on a continuous scale by ELISA. It was the aim of the present study to evaluate if CSF levels of total tau can be used as a diagnostic test for the differentiation of molecular sCJD subtypes during life-time.

Methods

This diagnostic study is based on data from an ongoing surveillance study of the German national reference centre for Transmissible Spongiform Encephalopathies (Heinemann, et al., 2007).

Patients diagnosed with definite sCJD between 2001 and 2012 who were investigated for their molecular subtype within the routine surveillance process were included in this study. Moreover, a
Control group of patients diagnosed with Alzheimer’s disease (AD) in the same centre (using Dubois’ revised research criteria (Dubois, et al., 2007)) and enrolled in a longitudinal observational study (Schmidt, et al., 2013) were tested for their codon 129 genotype and added to the study population. Lumbar punctures were performed at time of diagnosis; CSF tau protein levels were quantitatively analysed using a commercially available ELISA according to the manufacturer’s instructions (Innogenetics, Ghent, Belgium) (Otto, et al., 2002).

Tau values were logarithmized to the base of 10 in order to fulfil the normal distribution assumption and were used in their logarithmized form in all analyses. In a first step, total tau was compared between sCJD PrP Type 1, sCJD PrP Type 2 and AD patients within each codon 129 genotype using ANOVAs (and Tukey Post-hoc tests for pairwise comparisons). In a second step, ROC analyses were performed for the comparison of sCJD PrP Type 1 and 2 patients within each codon 129 genotype and standard measures of diagnostic validity were calculated for the best cut-off value (sensitivity, specificity, predictive values) identified by the Youden index. Neuropathology results obtained post-mortem were used as the gold standard against which the proposed diagnostic procedure was tested.

Associations between tau values and markers of disease progression (time to first tau test, total duration of disease) were investigated within and across subtypes using linear regression models. Differences of markers of disease progressions between subgroups were assessed using Wilcoxon ranksum tests. All data analyses were performed using Stata 12 (StataCorp, USA).

Informed consent was given by all study participants or their legal next of kin. Ethics approval was obtained from the local Ethics Committee of the University of Göttingen (Study 11/11/93).

Results

In total, 296 sCJD patients (median age 69, interquartile range 63-73; 57 % female) were enrolled in this study. The majority of these patients carried a MM genotype at codon 129 (n=178), whereas MV (n=55) and VV (n=63) genotypes were less common (Figure 1E). Most patients with MM genotype carried PrP type 1 (91%, n=162), whereas 62% (n=34) of those with MV genotype and 83% of VV patients (n=52) showed a PrP type 2 in their post-mortems. Of the 143 AD patients included in this study, 60 carried a MM, 61 a MV and 22 a VV genotype. In all genotypes, both sCJD subtypes showed tau levels significantly higher than control patients suffering from Alzheimer’s disease (p<0.001 for all comparisons, Tukey Post-hoc tests after ANOVA, Figure 1B-E). CJD patients with PrP type 1 showed...
significantly higher tau levels in MM (p<0.001) and MV genotypes than patients with PrP type 2 (p=0.008), but lower levels in patients with VV genotype (p=0.004; all Tukey Post-hoc tests after ANOVA, Figure 1A). There was no confounding effect of sex or age at diagnosis on the association of subtypes and tau levels. Areas under the curve (AUCs) confirmed a good discriminatory ability of total tau in sCJD patients when codon 129 genotype was known (AUC [MM]: 0.76 (95%CI: 0.62-0.91), AUC [MV]: 0.79 (95%CI: 0.67-0.92), AUC [VV]: 0.80 (95%CI: 0.66-0.93), Figure 2). While 3,000 pg/ml could be applied as the optimal cut-off for being classified as PrP type 1 for patients with MM and MV genotype (with higher tau levels being predictive for MM1 and MV1 subtype), 6,000 pg/ml was identified as the best cut-off for patients carrying a VV genotype (with higher tau levels being predictive for VV2 subtype). Using these cut-off points (which were based on the Youden index) we obtained sensitivities of 81% (MM), 76% (MV) and 65% (VV) with corresponding specificities of 69% (MM), 72% (MV) and 91% (VV).

In our study, tau levels were inversely associated with duration of disease (-74 (95%CI: -111 - -37) pg/ml per 10 days, p<0.001) and time to first tau test (-132 (95%CI: -196 - -69) pg/ml per 10 days, p<0.001, linear regression). This effect was constant over all subtypes (p for interaction=0.987 (duration of disease); 0.865 (time to first tau test)). Molecular subtypes associated with higher tau values at diagnosis showed also a more rapid disease progression (as measured by disease duration and time to first tau test, Table 1).

Discussion

In this diagnostic study we showed that CSF tau levels can be used as a marker for molecular subtype in sporadic Creutzfeldt-Jakob disease when codon 129 genotype is known; we thus provide for the first time a widely available and easy to perform pre-mortem test for subgroup differentiation in sporadic Creutzfeldt-Jakob disease. Tau was able to show a good discriminatory ability only if codon 129 genotype was known. This can be attributed to the fact that tau levels were considerably higher in PrP type 1 patients with MM and MV genotype, but lower in those with VV genotype. It can thus not be recommended to use tau as a test for subtype if no information on codon 129 genotype is available. However, genotypes can be assessed easily pre-mortem using routine genetic testing. The combination of genotyping and CSF tau
testing provides thereby a feasible and valid approach for subtype differentiation in high-income as well as in low-income settings.

Observed differences in tau levels between subtypes can be attributed to the different rates of disease progression which are present at point of diagnosis. Within our study we were able to show that disease progression rates (measured by time to first tau test and total disease duration) are inversely associated with tau levels at point of diagnosis; moreover they differ significantly between subtypes with a faster disease progression in those subtypes with higher tau levels at point of diagnosis (Table 1). As tau is a marker of neurodegeneration, it seems reasonable to consider the speed of neuronal loss as a molecular equivalent of disease progression rates; however, other neuropathological processes like astrogliosis, PrP deposition or plaque formation might also play a role. Subtype-specific findings attributable to different rates of disease progression have been described in a similar way for proteins 14-3-3 and MRI profiles (Gmitterova, et al., 2009,Meissner, et al., 2009); however, these findings have not been transferred to clinical practice, because 14-3-3 ELISA results are not commonly available and MRI profile differentiation needs expert radiological rating. Total tau, on the other hand, is a widely available test which can also be applied in resource-poor settings. Another advantage of total tau is, that subtype differentiation can be based on information at the point of diagnosis and does not need to rely on additional retrospective information about e.g. the course of disease before diagnosis which is difficult to obtain and less reliable. In addition, the suggested approach can also be helpful for research studies as the distribution of subtypes within a study population might play an important role as an additional explanatory variable or as a confounder. Again, subtypes are available in a small subset of CJD patients only, which makes comprehensive studies in this rare disease more challenging. Knowledge about codon 129 genotype and CSF tau levels might help in overcoming the limitations of future studies in the field.

A potential limitation of total tau might be that the observed sensitivities and specificities are considered as acceptable but not high enough for proper diagnostic testing. Therefore, future studies should focus on combining information on tau levels with other potential predictive markers available in a cross-sectional setting in order to develop a composite diagnostic test procedure which is associated with a higher diagnostic validity as CSF tau levels alone. As there is no other test available at the moment we are confident that the use of CSF total tau alone will improve patient care although its observed diagnostic validity allows correct classification in 70-80% of patients only.
A major strength of this study is that it represents one of the largest reported samples of sCJD patients with a definite subtype. This is not restricted by the fact that it reflects a monocentre experience. Initial clinical evaluation and decision on lumbar puncture in this study population has been made by numerous hospitals in Germany so that major parts of the study can be considered a multicentre study. However, potential biases have been removed by this study design as all tau tests were performed in the same laboratory and as all patients received the same standardised clinical work-up from the time of diagnosis onwards.

One limitation of this study is that it is entirely based on patients who were assessed for their molecular subtype post-mortem within a routine diagnostic setting. However, a post-mortem was offered to all patients and the decision for post-mortem subtype determination was entirely due to the wishes of the patients’ family. This makes it unlikely that bias has been introduced by the restriction of the study population. Moreover, we did not find systematic differences in age, sex or duration of disease between sCJD patients with a definite molecular subtype and those without (probable and possible sCJD cases according to the updated CJD criteria (Zerr, et al., 2009)), when reviewing all patients referred to the German National Reference Center between 2001 and 2012. Another limitation of our study is, that we were not able to take into account sCJD patients with mixed PrP type 1/2 subtypes which have been described in recent years (Puoti, et al., 1999, Uro-Coste, et al., 2008) as there were only few cases available in our surveillance study. The presence of mixed subtypes adds complexity to subtype differentiation and might decrease the diagnostic validity of tau as a subtype-specific marker. Although the proportion of patients with detected mixed subtypes is low, this issue needs to be addressed in future studies.

Moreover, we only looked at the first tau test during a diagnostic workup even if there were follow-up tests available. Follow-up tests showed in general significantly higher tau levels than tests at point of diagnosis (difference between first and second tau test (n=24): 3135 pg/ml (95%CI: 1314-4956), p<0.001); however, it has to be kept in mind, that patients with serial CSF testing underlie a severe selection bias as a second CSF test is usually only performed when there is uncertainty in the diagnostic process. This happens typically if 14-3-3 or tau are negative in the first test. Data obtained within a routine setting might therefore not be generalizable for the longitudinal course of CSF tau levels of other sCJD patients. We therefore cannot predict how deviations in the timing of the tau test might affect the diagnostic validity of tau. As our study is based on surveillance data from multiple
hospitals, we think that these deviations in the timing of tau tests are already incorporated in our study results and that the reported diagnostic validity of tau is realistic for routine settings with some variance in the timing of tau tests.

In summary, CSF total tau levels might serve as a diagnostic test for molecular subtype in sCJD when codon 129 genotype is known. Future studies should focus on establishing composite diagnostic tests (including clinical markers, MRI and CSF tests) in order to allow an improved subtype differentiation in sCJD patients pre-mortem as this is crucial for both appropriate patient care and clinical research.

Acknowledgements

This study was funded by the Robert Koch-Institute through funds of the Federal Ministry of Health (grant no. 1369-341). The work was supported by a grant from the European Commission: PRIORITY FP7 (grant no. 222887).

Conflict of interests

The authors declare that they have no conflict of interest.
References

Figure legends:

Figure 1: Boxplots showing A) Tau levels of sCJD patients by molecular subtype; B) Tau levels of sCJD patients and AD patients with MM genotype by subtype; C) Tau levels of sCJD patients and AD patients with MV genotype by subtype; D) Tau levels of sCJD patients and AD patients with VV genotype by subtype. Tau levels are displayed on a logarithmic scale (y axis). Boxes represent the interquartile range (upper line: 75% quantile, lower line: 25% quantile, central line: median). Whiskers represent the 90% and 10% quantile, respectively. Outliers are displayed as dots. Means and standard deviations for all subtypes are displayed in E). P values for the comparisons of two groups are indicated in the figure by brackets and numbers (using Tukey Post-hoc tests on the logarithmized tau values after an initial ANOVA testing for global differences).

Figure 2: Diagnostic validity of total tau for molecular subtype differentiation. Displayed are receiver operating characteristics curves of total tau for the comparison of A) MM1 and MM2 subtypes, B) MV1 and MV2 subtypes and C) VV1 and VV2 subtypes of sporadic Creutzfeldt-Jakob disease. Measures of diagnostic validity are summarized in D) together with the respective cut-off values identified in this study. *Positive predictive value **Negative predictive value
Table 1: Markers for disease progression by sCJD subtype

<table>
<thead>
<tr>
<th>Subtype (n=296)</th>
<th>MM1 (n=162)</th>
<th>MM2 (n=16)</th>
<th>MV1 (n=21)</th>
<th>MV2 (n=34)</th>
<th>VV1 (n=11)</th>
<th>VV2 (n=52)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disease duration (in days)*</td>
<td>133 (94-267)</td>
<td>421 (127-632)</td>
<td>155 (91-233)</td>
<td>426 (322-599)</td>
<td>513 (173-599)</td>
<td>180 (137-280)</td>
</tr>
<tr>
<td>p value**</td>
<td>0.015</td>
<td><0.001</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time to first tau test (in days)*</td>
<td>83 (59-144)</td>
<td>227 (105-374)</td>
<td>112 (55-186)</td>
<td>290 (180-390)</td>
<td>157 (63-319)</td>
<td>120 (85-182)</td>
</tr>
<tr>
<td>p value**</td>
<td>0.001</td>
<td><0.001</td>
<td>0.397</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Displayed are medians and interquartile ranges (in brackets)

**Using Wilcoxon ranksum tests