2.50
Hdl Handle:
http://hdl.handle.net/10033/123291
Title:
Data-driven assessment of eQTL mapping methods.
Authors:
Michaelson, Jacob J; Alberts, Rudi; Schughart, Klaus ( 0000-0002-6824-7523 ) ; Beyer, Andreas
Abstract:
The analysis of expression quantitative trait loci (eQTL) is a potentially powerful way to detect transcriptional regulatory relationships at the genomic scale. However, eQTL data sets often go underexploited because legacy QTL methods are used to map the relationship between the expression trait and genotype. Often these methods are inappropriate for complex traits such as gene expression, particularly in the case of epistasis.
Affiliation:
Cellular Networks and Systems Biology, Biotechnology Center - TU Dresden, Dresden, Germany.
Citation:
Data-driven assessment of eQTL mapping methods. 2010, 11:502 BMC Genomics
Journal:
BMC genomics
Issue Date:
2010
URI:
http://hdl.handle.net/10033/123291
DOI:
10.1186/1471-2164-11-502
PubMed ID:
20849587
Type:
Article
Language:
en
ISSN:
1471-2164
Appears in Collections:
publications of the department infection genetics (INFG)

Full metadata record

DC FieldValue Language
dc.contributor.authorMichaelson, Jacob Jen
dc.contributor.authorAlberts, Rudien
dc.contributor.authorSchughart, Klausen
dc.contributor.authorBeyer, Andreasen
dc.date.accessioned2011-03-02T11:51:15Zen
dc.date.available2011-03-02T11:51:15Zen
dc.date.issued2010en
dc.identifier.citationData-driven assessment of eQTL mapping methods. 2010, 11:502 BMC Genomicsen
dc.identifier.issn1471-2164en
dc.identifier.pmid20849587en
dc.identifier.doi10.1186/1471-2164-11-502en
dc.identifier.urihttp://hdl.handle.net/10033/123291en
dc.description.abstractThe analysis of expression quantitative trait loci (eQTL) is a potentially powerful way to detect transcriptional regulatory relationships at the genomic scale. However, eQTL data sets often go underexploited because legacy QTL methods are used to map the relationship between the expression trait and genotype. Often these methods are inappropriate for complex traits such as gene expression, particularly in the case of epistasis.en
dc.language.isoenen
dc.subject.meshAnimalsen
dc.subject.meshBias (Epidemiology)en
dc.subject.meshChromosome Mappingen
dc.subject.meshComputer Simulationen
dc.subject.meshDatabases, Geneticen
dc.subject.meshGene Expression Regulationen
dc.subject.meshHematopoietic Stem Cellsen
dc.subject.meshHippocampusen
dc.subject.meshLungen
dc.subject.meshMiceen
dc.subject.meshModels, Geneticen
dc.subject.meshMutationen
dc.subject.meshPolymorphism, Single Nucleotideen
dc.subject.meshQuantitative Trait Locien
dc.subject.meshQuantitative Trait, Heritableen
dc.subject.meshSample Sizeen
dc.subject.meshT-Lymphocytes, Regulatoryen
dc.titleData-driven assessment of eQTL mapping methods.en
dc.typeArticleen
dc.contributor.departmentCellular Networks and Systems Biology, Biotechnology Center - TU Dresden, Dresden, Germany.en
dc.identifier.journalBMC genomicsen

Related articles on PubMed

This item is licensed under a Creative Commons License
Creative Commons
All Items in HZI are protected by copyright, with all rights reserved, unless otherwise indicated.