2.50
Hdl Handle:
http://hdl.handle.net/10033/303498
Title:
Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus.
Authors:
Henningham, Anna; Ericsson, Daniel J; Langer, Karla; Casey, Lachlan W; Jovcevski, Blagojce; Chhatwal, G Singh; Aquilina, J Andrew; Batzloff, Michael R; Kobe, Bostjan; Walker, Mark J
Abstract:
Streptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4.
Affiliation:
School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Qld., Australia.
Citation:
Structure-informed design of an enzymatically inactive vaccine component for group A Streptococcus. 2013, 4 (4): MBio
Journal:
mBio
Issue Date:
2013
URI:
http://hdl.handle.net/10033/303498
DOI:
10.1128/mBio.00509-13
PubMed ID:
23919999
Type:
Article
Language:
en
ISSN:
2150-7511
Appears in Collections:
Publications of Dept. Medizinische Mikrobiologie (MMIK)

Full metadata record

DC FieldValue Language
dc.contributor.authorHenningham, Annaen
dc.contributor.authorEricsson, Daniel Jen
dc.contributor.authorLanger, Karlaen
dc.contributor.authorCasey, Lachlan Wen
dc.contributor.authorJovcevski, Blagojceen
dc.contributor.authorChhatwal, G Singhen
dc.contributor.authorAquilina, J Andrewen
dc.contributor.authorBatzloff, Michael Ren
dc.contributor.authorKobe, Bostjanen
dc.contributor.authorWalker, Mark Jen
dc.date.accessioned2013-10-16T12:44:52Z-
dc.date.available2013-10-16T12:44:52Z-
dc.date.issued2013-
dc.identifier.citationStructure-informed design of an enzymatically inactive vaccine component for group A Streptococcus. 2013, 4 (4): MBioen
dc.identifier.issn2150-7511-
dc.identifier.pmid23919999-
dc.identifier.doi10.1128/mBio.00509-13-
dc.identifier.urihttp://hdl.handle.net/10033/303498-
dc.description.abstractStreptococcus pyogenes (group A Streptococcus [GAS]) causes ~700 million human infections/year, resulting in >500,000 deaths. There is no commercial GAS vaccine available. The GAS surface protein arginine deiminase (ADI) protects mice against a lethal challenge. ADI is an enzyme that converts arginine to citrulline and ammonia. Administration of a GAS vaccine preparation containing wild-type ADI, a protein with inherent enzymatic activity, may present a safety risk. In an approach intended to maximize the vaccine safety of GAS ADI, X-ray crystallography and structural immunogenic epitope mapping were used to inform vaccine design. This study aimed to knock out ADI enzyme activity without disrupting the three-dimensional structure or the recognition of immunogenic epitopes. We determined the crystal structure of ADI at 2.5 Å resolution and used it to select a number of amino acid residues for mutagenesis to alanine (D166, E220, H275, D277, and C401). Each mutant protein displayed abrogated activity, and three of the mutant proteins (those with the D166A, H275A, and D277A mutations) possessed a secondary structure and oligomerization state equivalent to those of the wild type, produced high-titer antisera, and avoided disruption of B-cell epitopes of ADI. In addition, antisera raised against the D166A and D277A mutant proteins bound to the GAS cell surface. The inactivated D166A and D277A mutant ADIs are ideal for inclusion in a GAS vaccine preparation. There is no human ortholog of ADI, and we confirm that despite limited structural similarity in the active-site region to human peptidyl ADI 4 (PAD4), ADI does not functionally mimic PAD4 and antiserum raised against GAS ADI does not recognize human PAD4.en
dc.language.isoenen
dc.rightsArchived with thanks to mBioen
dc.titleStructure-informed design of an enzymatically inactive vaccine component for group A Streptococcus.en
dc.typeArticleen
dc.contributor.departmentSchool of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Qld., Australia.en
dc.identifier.journalmBioen

Related articles on PubMed

This item is licensed under a Creative Commons License
Creative Commons
All Items in HZI are protected by copyright, with all rights reserved, unless otherwise indicated.