• A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

      Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael; Helmholtz-Institut für Pharmaceutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
      Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation.
    • Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline.

      Artzy-Schnirman, Arbel; Hobi, Nina; Schneider-Daum, Nicole; Guenat, Olivier T; Lehr, Claus-Michael; Sznitman, Josué; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-06)
      With rapid advances in micro-fabrication processes and the availability of biologically-relevant lung cells, the development of lung-on-chip platforms is offering novel avenues for more realistic inhalation assays in pharmaceutical research, and thereby an opportunity to depart from traditional in vitro lung assays. As advanced models capturing the cellular pulmonary make-up at an air-liquid interface (ALI), lung-on-chips emulate both morphological features and biological functionality of the airway barrier with the ability to integrate respiratory breathing motions and ensuing tissue strains. Such in vitro systems allow importantly to mimic more realistic physiological respiratory flow conditions, with the opportunity to integrate physically-relevant transport determinants of aerosol inhalation therapy, i.e. recapitulating the pathway from airborne flight to deposition on the airway lumen. In this short opinion, we discuss such points and describe how these attributes are paving new avenues for exploring improved drug carrier designs (e.g. shape, size, etc.) and targeting strategies (e.g. conductive vs. respiratory regions) amongst other. We argue that while technical challenges still lie along the way in rendering in vitro lung-on-chip platforms more widespread across the general pharmaceutical research community, significant momentum is steadily underway in accelerating the prospect of establishing these as in vitro "gold standards"
    • Advancing human pulmonary disease models in preclinical research: opportunities for lung-on-chips..

      Artzy-Schnirman, Arbel; Lehr, Claus-Michael; Sznitman, Josué; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Taylor&Francis, 2020-03-11)
      [No abstracr available]
    • Analysis and optimization of two film-coated tablet production processes by computer simulation: A case study

      Hering, Stefanie; Schäuble, Nico; Buck, Thomas M.; Loretz, Brigitta; Rillmann, Thomas; Stieneker, Frank; Lehr, Claus Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (MDPI, 2021-01-01)
      Increasing regulatory demands are forcing the pharmaceutical industry to invest its available resources carefully. This is especially challenging for small- and middle-sized companies. Computer simulation software like FlexSim allows one to explore variations in production processes without the need to interrupt the running process. Here, we applied a discrete-event simulation to two approved film-coated tablet production processes. The simulations were performed with FlexSim (FlexSim Deutschland—Ingenieurbüro für Simulationsdienstleistung Ralf Gruber, Kirchlengern, Germany). Process visualization was done using Cmap Tools (Florida Institute for Human and Machine Cognition, Pensacola, FL, USA), and statistical analysis used MiniTab® (Minitab GmbH, Munich, Germany). The most critical elements identified during model building were the model logic, operating schedule, and processing times. These factors were graphically and statistically verified. To optimize the utilization of employees, three different shift systems were simulated, thereby revealing the advantages of two-shift and one-and-a-half-shift systems compared to a one-shift system. Without the need to interrupt any currently running production processes, we found that changing the shift system could save 50–53% of the campaign duration and 9–14% of the labor costs. In summary, we demonstrated that FlexSim, which is mainly used in logistics, can also be advantageously implemented for modeling and optimizing pharmaceutical production processes.
    • Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.

      Nafee, Noha; Husari, Ayman; Maurer, Christine K; Lu, Cenbin; de Rossi, Chiara; Steinbach, Anke; Hartmann, Rolf W; Lehr, Claus-Michael; Schneider, Marc (2014-10-28)
      Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (<100nm diameter) provided high encapsulation efficiency (68-95%) according to SLN composition, high burst in phosphate buffer saline compared to prolonged release of the payload over >8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives.
    • Appraisal on the wound healing potential of Melaleuca alternifolia and Rosmarinus officinalis L. essential oil-loaded chitosan topical preparations.

      Labib, Rola M; Ayoub, Iriny M; Michel, Haidy E; Mehanny, Mina; Kamil, Verena; Hany, Meryl; Magdy, Mirette; Moataz, Aya; Maged, Boula; Mohamed, Ahmed; et al. (PLOS, 2019-01-01)
      The present study investigates the wound healing potential of three chitosan-based topical preparations loaded with either tea tree essential oil, rosemary essential oil or a mixture of both oils in vivo. Essential oils of M. alternifolia and R. officinalis were analyzed using GC/MS. Essential oil-loaded chitosan topical preparations were formulated. Wound healing potential was evaluated in vivo using an excision wound model in rats. GC/MS analysis of M. alternifolia and R. officinalis essential oils revealed richness in oxygenated monoterpenes, representing 51.06% and 69.61% of the total oil composition, respectively. Topical application of chitosan-based formulation loaded with a mixture of tea tree and rosemary oils resulted in a significant increase in wound contraction percentage compared to either group treated with individual essential oils and the untreated group. Histopathological examination revealed that topical application of tea tree and rosemary oil combination demonstrated complete re-epithelialization associated with activated hair follicles. The high percentage of oxygenated monoterpenes in both essential oils play an important role in the antioxidant and wound healing potential observed herein. Incorporation of tea tree and rosemary essential oils in chitosan-based preparations in appropriate combination could efficiently promote different stages of wound healing.
    • Approaches to surface engineering of extracellular vesicles.

      Richter, Maximilian; Vader, Pieter; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2021-04-06)
      Extracellular vesicles (EVs) are cell-derived nanoparticles that are important mediators in intercellular communication. This function makes them auspicious candidates for therapeutic and drug-delivery applications. Among EVs, mammalian cell derived EVs and outer membrane vesicles (OMVs) produced by gram-negative bacteria are the most investigated candidates for pharmaceutical applications. To further optimize their performance and to utilize their natural abilities, researchers have strived to equip EVs with new moieties on their surface while preserving the integrity of the vesicles. The aim of this review is to give a comprehensive overview of techniques that can be used to introduce these moieties to the vesicle surface. Approaches can be classified in regards to whether they take place before or after the isolation of EVs. The producing cells can be subjected to genetic manipulation or metabolic engineering to produce surface modified vesicles or EVs are engineered after their isolation by physical or chemical means. Here, the advantages and disadvantages of these processes and their applicability for the development of EVs as therapeutic agents are discussed.
    • Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

      Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
      The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
    • Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part I: model characterisation.

      Hittinger, Marius; Janke, Julia; Huwer, Hanno; Scherließ, Regina; Schneider-Daum, Nicole; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland,Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-09)
      The development of new formulations for pulmonary drug delivery is a challenge on its own. New in vitro models which address the lung are aimed at predicting and optimising the quality, efficacy and safety of inhaled drugs, to facilitate the more rapid translation of such products into the clinic. Reducing the complexity of the in vivo situation requires that such models reproducibly reflect essential physiological factors in vitro. The choice of cell types, culture conditions and the experimental set-up, can affect the outcome and the relevance of a study. In the alveolar space of the lung, epithelial cells and alveolar macrophages are the most important cell types, forming an efficient cellular barrier to aerosols. Our aim was to mimic this barrier with primary human alveolar cells. Cell densities of alveolar macrophages and epithelial cells, isolated from the same human donor, were optimised, with a focus on barrier properties. The combination of 300,000 epithelial cells/cm² together with 100,000 macrophages/cm² showed a functional barrier (transepithelial electrical resistance > 500Ω.cm²). This cell model was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures. The functionality of the in vitro system was investigated with spray-dried fluorescently labelled poly(lactic-co-glycolic) acid particles loaded with ovalbumin as a model drug.
    • Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part II: evaluation of IL-10-loaded microparticles for the treatment of lung inflammation.

      Hittinger, Marius; Mell, Nico Alexander; Huwer, Hanno; Loretz, Brigitta; Schneider-Daum, Nicole; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland,Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-09)
      Acute respiratory distress syndrome is linked to inflammatory processes in the human lung. The aim of this study was to mimic in vitro the treatment of lung inflammation by using a cell-based human autologous co-culture model. As a potential trial medication, we developed a pulmonary dry powder formulation loaded with interleukin-10 (IL-10), a potent anti-inflammatory cytokine. The inflammatory immune response was stimulated by lipopolysaccharide. The co-culture was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures )PADDOCC), to deposit the IL-10-loaded microparticles on the inflamed co-culture model at the air-liquid interface. This treatment significantly reduced the secretion of interleukin-6 and tumour necrosis factor, as compared to the deposition of placebo (unloaded) particles. Our results show that the alveolar co-culture model, in combination with a deposition device such as the PADDOCC, may serve as a powerful tool for testing the safety and efficacy of dry powder formulations for pulmonary drug delivery.
    • The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane.

      Graef, Florian; Vukosavljevic, Branko; Michel, Jean-Philippe; Wirth, Marius; Ries, Oliver; De Rossi, Chiara; Windbergs, Maike; Rosilio, Véronique; Ducho, Christian; Gordon, Sarah; et al. (2016)
      Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell®filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
    • Bacterial extracellular vesicles: Understanding biology promotes applications as nanopharmaceuticals.

      Jahromi, Leila Pourtalebi; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2021-03-25)
      Extracellular vesicle (EV)-mediated communication between proximal and distant cells is a highly conserved characteristic in all of the life domains, including bacteria. These vesicles that contain a variety of biomolecules, such as proteins, lipids, nucleic acids, and small-molecule metabolites play a key role in the biology of bacteria. They are one of the key underlying mechanisms behind harmful or beneficial effects of many pathogenic, symbiont, and probiotic bacteria. These nanoscale EVs mediate extensive crosstalk with mammalian cells and deliver their cargos to the host. They are stable in physiological condition, can encapsulate diverse biomolecules and nanoparticles, and their surface could be engineered with available technologies. Based on favorable characteristics of bacterial vesicles, they can be harnessed for designing a diverse range of therapeutics and diagnostics for treatment of disorders including tumors and resistant infections. However, technical limitations for their production, purification, and characterization must be addressed in future studies.
    • Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery.

      Labouta, Hagar Ibrahim; Menina, Sara; Kochut, Annika; Gordon, Sarah; Geyer, Rebecca; Dersch, Petra; Lehr, Claus-Michael; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2015-12-28)
      Intracellular bacteria invade mammalian cells to establish an infectious niche. The current work models adhesion and subsequent internalization strategy of pathogenic bacteria into mammalian cells to design a bacteriomimetic bioinvasive delivery system. We report on the surface functionalization of liposomes with a C-terminal fragment of invasin (InvA497), an invasion factor in the outer membrane of Yersinia pseudotuberculosis. InvA497-functionalized liposomes adhere to mammalian epithelial HEp-2 cell line at different infection stages with a significantly higher efficiency than liposomes functionalized with bovine serum albumin. Covalent attachment of InvA497 results in higher cellular adhesion than liposomes with physically adsorbed InvA497 with non-specific surface protein alignment. Uptake studies in HEp-2 cells indicate active internalization of InvA497-functionalized liposomes via β1-integrin receptor-mediated uptake mechanism mimicking the natural invasion strategy of Y. pseudotuberculosis. Uptake studies in Caco-2 cells at different polarization states demonstrate specific targeting of the InvA497-functionalized liposomes to less polarized cells reflecting the status of inflamed cells. Moreover, when loaded with the anti-infective agent gentamicin and applied to HEp-2 cells infected with Y. pseudotuberculosis, InvA497-functionalized liposomes are able to significantly reduce the infection load relative to non-functionalized drug-loaded liposomes. This indicates a promising application of such a bacteriomimetic system for drug delivery to intracellular compartments.
    • Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor.

      Drost, Menka; Diamanti, Eleonora; Fuhrmann, Kathrin; Goes, Adriely; Shams, Atanaz; Haupenthal, Jörg; Koch, Marcus; Hirsch, Anna K H; Fuhrmann, Gregor; HIRI, Helmholtz-Institut für RNA-basierte Infektionsforschung, Josef-Shneider Strasse 2, 97080 Würzburg, Germany. (MDPI, 2021-12-21)
      Liposomes have been studied for decades as nanoparticulate drug delivery systems for cytostatics, and more recently, for antibiotics. Such nanoantibiotics show improved antibacterial efficacy compared to the free drug and can be effective despite bacterial recalcitrance. In this work, we present a loading method of bacteriomimetic liposomes for a novel, hydrophobic compound (HIPS5031) inhibiting energy-coupling factor transporters (ECF transporters), an underexplored antimicrobial target. The liposomes were composed of DOPG (18:1 (Δ9-cis) phosphatidylglycerol) and CL (cardiolipin), resembling the cell membrane of Gram-positive Staphylococcus aureus and Streptococcus pneumoniae, and enriched with cholesterol (Chol). The size and polydispersity of the DOPG/CL/± Chol liposomes remained stable over 8 weeks when stored at 4 °C. Loading of the ECF transporter inhibitor was achieved by thin film hydration and led to a high encapsulation efficiency of 33.19% ± 9.5% into the DOPG/CL/Chol liposomes compared to the phosphatidylcholine liposomes (DMPC/DPPC). Bacterial growth inhibition assays on the model organism Bacillus subtilis revealed liposomal HIPS5031 as superior to the free drug, showing a 3.5-fold reduction in CFU/mL at a concentration of 9.64 µM. Liposomal HIPS5031 was also shown to reduce B. subtilis biofilm. Our findings present an explorative basis for bacteriomimetic liposomes as a strategy against drug-resistant pathogens by surpassing the drug-formulation barriers of innovative, yet unfavorably hydrophobic, antibiotics.
    • Barriers and motivations for non-invasive drug delivery.

      Loretz, Brigitta; Schneider-Daum, Nicole; Windbergs, Maike; Schaefer, Ulrich; Schneider, Marc; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1,66123 Saarbrücken, Germany. (2017-09)
    • Biocompatible bacteria-derived vesicles show inherent antimicrobial activity.

      Schulz, Eilien; Goes, Adriely; Garcia, Ronald; Panter, Fabian; Koch, Marcus; Müller, Rolf; Fuhrmann, Kathrin; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2018-11-28)
      Up to 25,000 people die each year from resistant infections in Europe alone, with increasing incidence. It is estimated that a continued rise in bacterial resistance by 2050 would lead up to 10 million annual deaths worldwide, exceeding the incidence of cancer deaths. Although the design of new antibiotics is still one way to tackle the problem, pharmaceutical companies investigate far less into new drugs than 30 years ago. Incorporation of antibiotics into nanoparticle drug carriers ("nanoantibiotics") is currently investigated as a promising strategy to make existing antibiotics regain antimicrobial strength and overcome certain types of microbial drug resistance. Many of these synthetic systems enhance the antimicrobial effect of drugs by protecting antibiotics from degradation and reducing their side effects. Nevertheless, they often cannot selectively target pathogenic bacteria and - due to their synthetic origin - may induce side-effects themselves. In this work, we present the characterisation of naturally derived outer membrane vesicles (OMVs) as biocompatible and inherently antibiotic drug carriers. We isolated OMVs from two representative strains of myxobacteria, Cystobacter velatus Cbv34 and Sorangiineae species strain SBSr073, a bacterial order with the ability of lysing other bacterial strains and currently investigated as sources of new secondary metabolites. We investigated the myxobacterias' inherent antibacterial properties after isolation by differential centrifugation and purification by size-exclusion chromatography. OMVs have an average size range of 145-194 nm. We characterised their morphology by electron cryomicroscopy and found that OMVs are biocompatible with epithelial cells and differentiated macrophages. They showed a low endotoxin activity comparable to those of control samples, indicating a low acute inflammatory potential. In addition, OMVs showed inherent stability under different storage conditions, including 4 °C, -20 °C, -80 °C and freeze-drying. OMV uptake in Gram-negative model bacterium Escherichia coli (E. coli) showed similar to better incorporation than liposome controls, indicating the OMVs may interact with model bacteria via membrane fusion. Bacterial uptake correlated with antimicrobial activity of OMVs as measured by growth inhibition of E. coli. OMVs from Cbv34 inhibited growth of E. coli to a comparable extent as the clinically established antibiotic gentamicin. Liquid-chromatography coupled mass spectrometry analyses revealed the presence of cystobactamids in OMVs, inhibitors of bacterial topoisomerase currently studied to treat different Gram-negative and Gram-positive pathogens. This work, may serve as an important basis for further evaluation of OMVs derived from myxobacteria as novel therapeutic delivery systems against bacterial infections.
    • Biodegradable starch derivatives with tunable charge density-synthesis, characterization, and transfection efficiency.

      Thiele, Carolin; Loretz, Brigitta; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-10-03)
      Regioselective oxidation of water-soluble starch and conversion with alkyl diamines resulted in defined cationic starch derivatives. Those were assessed in their potential for polyplex formation, biocompatibility, and transfection efficacy. The new polymers have the advantage of being biodegradable, being not cytotoxic at rather high concentrations (LC50 > 400 μg/ml) for C2 substitution, and reach transfection efficiencies comparable to commercial transfection reagents. The polymer with the highest transfection efficacy is a C12 substituted polymer (degree of substitution = 30 %) at N/P 3. The LC50 value of that highly modified polymer is still one order of magnitude lower than that of PEI 25 kDa.
    • Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections.

      Goes, Adriely; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2018-03-29)
      Biogenic and biomimetic therapeutics are a relatively new class of systems that are of physiological origin and/or take advantage of natural pathways or aim at mimicking these to improve selective interaction with target tissue. The number of biogenic and bioengineered avenues for drug therapy and diagnostics has multiplied over the past years for many applications, indicating the high expectations associated with this biological route. Nevertheless, the use of "bio"-related approaches for treating or diagnosing infectious diseases is still rare. Given that infectious diseases, in particular bacterial resistances, are seriously on the rise, there is an urgent need to take advantage of biogenic and bioengineered systems to target these challenges. In this manuscript, we first give a definition of the various "bio" terms, including biogenic, biomimetic, bioinspired, and bioengineered and we highlight them using tangible applications in the field of infectious diseases. Our examples cover cell-derived systems, including bioengineered bacteria, virus-like particles, and different cell-mimetics. Moreover, we discuss natural and bioengineered particles such as extracellular vesicles from mammalian and bacterial sources and liposomes. A concluding section outlines the potential for biomaterial-related avenues to overcome challenges associated with difficult-to-treat infections. We critically discuss benefits and risks for these applications and give an outlook on the future of biogenic engineering.
    • Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica.

      Menina, Sara; Eisenbeis, Janina; Kamal, Mohamed Ashraf M; Koch, Marcus; Bischoff, Markus; Gordon, Sarah; Loretz, Brigitta; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-VCH, 2019-07-22)
      Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
    • Biological barriers - Advanced drug delivery, in vitro modelling, and their implications for infection research.

      Schneider, Marc; Loretz, Brigitta; Windbergs, Maike; Schneider-Daum, Nicole; Schaefer, Ulrich F; Lehr, Claus-Michael; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2015-09)