• Tight coupling of polymerization and depolymerization of polyhydroxyalkanoates ensures efficient management of carbon resources in Pseudomonas putida

      Arias, Sagrario; Bassas-Galia, Monica; Molinari, Gabriella; Timmis, Kenneth N.; Environmental microbiology; Helmholtz Centre for infection research; Inhoffenstr. 7, D-38124 Braunschweig, Germany (2014-03-06)
    • Genome sequence and functional genomic analysis of the oil-degrading bacterium Oleispira antarctica.

      Kube, Michael; Chernikova, Tatyana N; Al-Ramahi, Yamal; Beloqui, Ana; Lopez-Cortez, Nieves; Guazzaroni, María-Eugenia; Heipieper, Hermann J; Klages, Sven; Kotsyurbenko, Oleg R; Langer, Ines; et al. (2013-07-23)
      Ubiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis-the paradigm of mesophilic hydrocarbonoclastic bacteria-O. antarctica has a larger genome that has witnessed massive gene-transfer events. We identify an array of alkane monooxygenases, osmoprotectants, siderophores and micronutrient-scavenging pathways. We also show that at low temperatures, the main protein-folding machine Cpn60 functions as a single heptameric barrel that uses larger proteins as substrates compared with the classical double-barrel structure observed at higher temperatures. With 11 protein crystal structures, we further report the largest set of structures from one psychrotolerant organism. The most common structural feature is an increased content of surface-exposed negatively charged residues compared to their mesophilic counterparts. Our findings are relevant in the context of microbial cold-adaptation mechanisms and the development of strategies for oil-spill mitigation in cold environments.
    • Broad host range vectors for expression of proteins with (Twin-) Strep-tag, His-tag and engineered, export optimized yellow fluorescent protein

      Dammeyer, Thorben; Timmis, Kenneth N; Tinnefeld, Philip (2013-05-20)
      Abstract Background In current protein research, a limitation still is the production of active recombinant proteins or native protein associations to assess their function. Especially the localization and analysis of protein-complexes or the identification of modifications and small molecule interaction partners by co-purification experiments requires a controllable expression of affinity- and/or fluorescence tagged variants of a protein of interest in its native cellular background. Advantages of periplasmic and/or homologous expressions can frequently not be realized due to a lack of suitable tools. Instead, experiments are often limited to the heterologous production in one of the few well established expression strains. Results Here, we introduce a series of new RK2 based broad host range expression plasmids for inducible production of affinity- and fluorescence tagged proteins in the cytoplasm and periplasm of a wide range of Gram negative hosts which are designed to match the recently suggested modular Standard European Vector Architecture and database. The vectors are equipped with a yellow fluorescent protein variant which is engineered to fold and brightly fluoresce in the bacterial periplasm following Sec-mediated export, as shown from fractionation and imaging studies. Expression of Strep-tag®II and Twin-Strep-tag® fusion proteins in Pseudomonas putida KT2440 is demonstrated for various ORFs. Conclusion The broad host range constructs we have produced enable good and controlled expression of affinity tagged protein variants for single-step purification and qualify for complex co-purification experiments. Periplasmic export variants enable production of affinity tagged proteins and generation of fusion proteins with a novel engineered Aequorea-based yellow fluorescent reporter protein variant with activity in the periplasm of the tested Gram-negative model bacteria Pseudomonas putida KT2440 and Escherichia coli K12 for production, localization or co-localization studies. In addition, the new tools facilitate metabolic engineering and yield assessment for cytoplasmic or periplasmic protein production in a number of different expression hosts when yields in one initially selected are insufficient.
    • Broad host range vectors for expression of proteins with (Twin-) Strep-tag, His-tag and engineered, export optimized yellow fluorescent protein.

      Dammeyer, Thorben; Timmis, Kenneth N; Tinnefeld, Philip; Institut für Physikalische und Theoretische Chemie, NanoBioSciences, Technische Universität Braunschweig, Hans Sommer Str, 10, Braunschweig 38106, Germany. T.Dammeyer@tu-braunschweig.de (2013)
      In current protein research, a limitation still is the production of active recombinant proteins or native protein associations to assess their function. Especially the localization and analysis of protein-complexes or the identification of modifications and small molecule interaction partners by co-purification experiments requires a controllable expression of affinity- and/or fluorescence tagged variants of a protein of interest in its native cellular background. Advantages of periplasmic and/or homologous expressions can frequently not be realized due to a lack of suitable tools. Instead, experiments are often limited to the heterologous production in one of the few well established expression strains.
    • Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail

      Del Pozo, Mercedes V; Fernández-Arrojo, Lucía; Gil-Martínez, Jorge; Montesinos, Alejandro; Chernikova, Tatyana N; Nechitaylo, Taras Y; Waliszek, Agnes; Tortajada, Marta; Rojas, Antonia; Huws, Sharon A; et al. (2012-09-21)
      Abstract Background A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product. Results In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45–55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (pNPbetaG) and pNP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g-1 dry biomass, using pNPbetaG as substrate), the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg-1 dry biomass) in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g-1 dry biomass in the basis of pNPbetaG). LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions) after 96–120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2) and 2–38000 fold higher (as compared with reported beta-glucosidases) activity towards cello-oligosaccharides may account for its performance in supplementation assays. Conclusions The results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of commercial cellulases.
    • Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail.

      Del Pozo, Mercedes V; Fernández-Arrojo, Lucía; Gil-Martínez, Jorge; Montesinos, Alejandro; Chernikova, Tatyana N; Nechitaylo, Taras Y; Waliszek, Agnes; Tortajada, Marta; Rojas, Antonia; Huws, Sharon A; et al. (2012)
      A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product.
    • Functional metagenomics unveils a multifunctional glycosyl hydrolase from the family 43 catalysing the breakdown of plant polymers in the calf rumen.

      Ferrer, Manuel; Ghazi, Azam; Beloqui, Ana; Vieites, José María; López-Cortés, Nieves; Marín-Navarro, Julia; Nechitaylo, Taras Y; Guazzaroni, María-Eugenia; Polaina, Julio; Waliczek, Agnes; et al. (2012)
      Microbial communities from cow rumen are known for their ability to degrade diverse plant polymers at high rates. In this work, we identified 15 hydrolases through an activity-centred metagenome analysis of a fibre-adherent microbial community from dairy cow rumen. Among them, 7 glycosyl hydrolases (GHs) and 1 feruloyl esterase were successfully cloned, expressed, purified and characterised. The most striking result was a protein of GH family 43 (GHF43), hereinafter designated as R_09-02, which had characteristics very distinct from the other proteins in this family with mono-functional β-xylosidase, α-xylanase, α-L-arabinase and α-L-arabinofuranosidase activities. R_09-02 is the first multifunctional enzyme to exhibit β-1,4 xylosidase, α-1,5 arabinofur(pyr)anosidase, β-1,4 lactase, α-1,6 raffinase, α-1,6 stachyase, β-galactosidase and α-1,4 glucosidase activities. The R_09-02 protein appears to originate from the chromosome of a member of Clostridia, a class of phylum Firmicutes, members of which are highly abundant in ruminal environment. The evolution of R_09-02 is suggested to be driven from the xylose- and arabinose-specific activities, typical for GHF43 members, toward a broader specificity to the glucose- and galactose-containing components of lignocellulose. The apparent capability of enzymes from the GHF43 family to utilise xylose-, arabinose-, glucose- and galactose-containing oligosaccharides has thus far been neglected by, or could not be predicted from, genome and metagenome sequencing data analyses. Taking into account the abundance of GHF43-encoding gene sequences in the rumen (up to 7% of all GH-genes) and the multifunctional phenotype herein described, our findings suggest that the ecological role of this GH family in the digestion of ligno-cellulosic matter should be significantly reconsidered.
    • Transcriptional profiling of the marine oil-degrading bacterium Alcanivorax borkumensis during growth on n-alkanes.

      Sabirova, Julia S; Becker, Anke; Lünsdorf, Heinrich; Nicaud, Jean-Marc; Timmis, Kenneth N; Golyshin, Peter N; Department of Bioscience and Bioengineering, Ghent University, Ghent, Belgium. julia.sabirova@ugent.be (2011-06)
      The marine oil-degrading bacterium Alcanivorax borkumensis SK2 has attracted significant interest due to its hydrocarbonoclastic lifestyle, its alkane-centered metabolism, and for playing an important ecological role in cleaning up marine oil spills. In this study, we used microarray technology to characterize the transcriptional responses of A. borkumensis to n-hexadecane exposure as opposed to pyruvate, which led to the identification of a total of 220 differentially expressed genes, with 109 genes being upregulated and 111 genes being downregulated. Among the genes upregulated on alkanes are systems predicted to be involved in the terminal oxidation of alkanes, biofilm formation, signal transduction, and regulation.
    • The 'LipoYeasts' project: using the oleaginous yeast Yarrowia lipolytica in combination with specific bacterial genes for the bioconversion of lipids, fats and oils into high-value products.

      Sabirova, Julia S; Haddouche, R; Van Bogaert, I N; Mulaa, F; Verstraete, W; Timmis, K N; Schmidt-Dannert, C; Nicaud, J M; Soetaert, W; Gesellschaft für biotechnologische Forschung (GBF), Mascheroder Weg 1, D-38124 Braunschweig, >Germany. (2011-01)
      The oleochemical industry is currently still dominated by conventional chemistry, with biotechnology only starting to play a more prominent role, primarily with respect to the biosurfactants or lipases, e.g. as detergents, or for biofuel production. A major bottleneck for all further biotechnological applications is the problem of the initial mobilization of cheap and vastly available lipid and oil substrates, which are then to be transformed into high-value biotechnological, nutritional or pharmacological products. Under the EU-sponsored LipoYeasts project we are developing the oleaginous yeast Yarrowia lipolytica into a versatile and high-throughput microbial factory that, by use of specific enzymatic pathways from hydrocarbonoclastic bacteria, efficiently mobilizes lipids by directing its versatile lipid metabolism towards the production of industrially valuable lipid-derived compounds like wax esters (WE), isoprenoid-derived compounds (carotenoids, polyenic carotenoid ester), polyhydroxyalkanoates (PHAs) and free hydroxylated fatty acids (HFAs). Different lipid stocks (petroleum, alkane, vegetable oil, fatty acid) and combinations thereof are being assessed as substrates in combination with different mutant and recombinant strains of Y. lipolytica, in order to modulate the composition and yields of the produced added-value products.
    • Efficient production of soluble recombinant single chain Fv fragments by a Pseudomonas putida strain KT2440 cell factory.

      Dammeyer, Thorben; Steinwand, Miriam; Krüger, Sarah-C; Dübel, Stefan; Hust, Michael; Timmis, Kenneth N; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2011)
      Recombinant antibody fragments have a wide range of applications in research, diagnostics and therapy. For many of these, small fragments like single chain fragment variables (scFv) function well and can be produced inexpensively in bacterial expression systems. Although Escherichia coli K-12 production systems are convenient, yields of different fragments, even those produced from codon-optimized expression systems, vary significantly. Where yields are inadequate, alternative production systems are needed. Pseudomonas putida strain KT2440 is a versatile biosafety strain known for good expression of heterologous genes, so we have explored its utility as a cell factory for production of scFvs.
    • Identification of oxylipins with antifungal activity by LC-MS/MS from the supernatant of Pseudomonas 42A2.

      Martin-Arjol, I; Bassas-Galia, M; Bermudo, E; Garcia, F; Manresa, A; Laboratori de Microbiologia, Facultat de Farmàcia, Universitat de Barcelona, Joan XXIII s/n, Barcelona, Spain. (2010-05)
      In microorganisms hydroxy fatty acids are produced from the biotransformation of unsaturated fatty acids. Such compounds belong to a class of oxylipins which are reported to perform a variety of biological functions such as anti-inflammatory or cytotoxic activity. These compounds have been found in rice and timothy plants after being infected by specific fungus. When grown in submerged culture with linoleic acid, Pseudomonas 42A2 accumulated in the supernatant several hydroxy fatty acids. In this work LC-MS/MS has been used to elucidate the structure of the components form the organic extract: 9-hydroxy-10,12-octadecadienoic acid; 13-hydroxy-9,11-octadecadienoic acid; 7,10-dihydroxy-8E-octadecenoic acid; 9,10,13-trihydroxy-11-octadecenoic acid and 9,12,13-trihydroxy-10-octadecenoic acid. Antimicrobial activity against several pathogenic fungal strains is presented: MIC (microg/mL) Verticillium dhaliae, 32; Macrophonia phaesolina, 32; Arthroderma uncinatum, 32; Trycophyton mentagrophytes, 64.
    • Characterization of marine isoprene-degrading communities.

      Alvarez, Laura Acuña; Exton, Daniel A; Timmis, Kenneth N; Suggett, David J; McGenity, Terry J; Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK. (2009-12)
      Isoprene is a volatile and climate-altering hydrocarbon with an atmospheric concentration similar to that of methane. It is well established that marine algae produce isoprene; however, until now there was no specific information about marine isoprene sinks. Here we demonstrate isoprene consumption in samples from temperate and tropical marine and coastal environments, and furthermore show that the most rapid degradation of isoprene coincides with the highest rates of isoprene production in estuarine sediments. Isoprene-degrading enrichment cultures, analysed by denaturing gradient gel electrophoresis and 454 pyrosequencing of the 16S rRNA gene and by culturing, were generally dominated by Actinobacteria, but included other groups such as Alphaproteobacteria and Bacteroidetes, previously not known to degrade isoprene. In contrast to specialist methane-oxidizing bacteria, cultivated isoprene degraders were nutritionally versatile, and nearly all of them were able to use n-alkanes as a source of carbon and energy. We therefore tested and showed that the ubiquitous marine hydrocarbon-degrader, Alcanivorax borkumensis, could also degrade isoprene. A mixture of the isolates consumed isoprene emitted from algal cultures, confirming that isoprene can be metabolized at low, environmentally relevant concentrations, and suggesting that, in the absence of spilled petroleum hydrocarbons, algal production of isoprene could maintain viable populations of hydrocarbon-degrading microbes. This discovery of a missing marine sink for isoprene is the first step in obtaining more robust predictions of its flux, and suggests that algal-derived isoprene provides an additional source of carbon for diverse microbes in the oceans.
    • Acidiplasma aeolicum gen. nov., sp. nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. nov.

      Golyshina, Olga V; Yakimov, Michail M; Lünsdorf, Heinrich; Ferrer, Manuel; Nimtz, Manfred; Timmis, Kenneth N; Wray, Victor; Tindall, Brian J; Golyshin, Peter N; Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. p.golyshin@bangor.ac.uk (2009-11)
      A novel acidophilic, cell-wall-less archaeon, strain V(T), was isolated from a hydrothermal pool on Vulcano Island, Italy. The morphology of cells was observed to vary from pleomorphic to coccoid. The temperature range for growth of strain V(T) was 15-65 degrees C with an optimum at 45 degrees C. The pH for growth ranged from pH 0 to 4 with an optimal at pH 1.4-1.6. Strain V(T) was able to grow aerobically and anaerobically, oxidizing ferrous iron and reducing ferric iron, respectively. The isolate grew chemo-organotrophically with yeast extract and yeast extract with glucose as the sources of energy and carbon. The molar G+C content in the DNA was 36 mol%. 16S rRNA gene sequence analysis demonstrated that strain V(T) was a member of the family Ferroplasmaceae, order Thermoplasmatales, phylum Euryarchaeota, showing sequence identities of 100 % with Ferroplasma cupricumulans BH2(T), 95.4 % with Ferroplasma acidiphilum Y(T), 94 % with Picrophilus torridus DSM 9790(T) and 92 % with Picrophilus oshimae DSM 9789(T). 16S rRNA gene sequence-based phylogenetic analysis showed that strain V(T) formed a monophyletic cluster together with F. cupricumulans BH2(T) and all other thermophilic isolates with available 16S rRNA gene sequences, whereas F. acidiphilum Y(T) formed another cluster with mesophilic isolates within the family Ferroplasmaceae. DNA-DNA hybridization values between strain V(T) and F. cupricumulans BH2(T) were well below 70 %, indicating that the two strains belong to separate species. Principal membrane lipids of strain V(T) were dibiphytanyl-based tetraether lipids containing pentacyclic rings. The polar lipids were dominated by a single phosphoglycolipid derivative based on a galactosyl dibiphytanyl phosphoglycerol tetraether, together with smaller amounts of monoglycosyl and diglycosyl dibiphytanyl ether lipids and the corresponding phosphoglycerol derivatives. The major respiratory quinones present were naphthoquinone derivatives. Given the notable physiological and chemical differences as well as the distinct phylogenetic placement of the new isolate relative to the type species of the genus Ferroplasma, we propose strain V(T) as a member of a new genus and species, Acidiplasma aeolicum gen. nov., sp. nov. The type strain of Acidiplasma aeolicum is strain V(T) (=DSM 18409(T) =JCM 14615(T)). In addition, we propose to transfer Ferroplasma cupricumulans Hawkes et al. 2008 to the genus Acidiplasma as Acidiplasma cupricumulans comb. nov. (type strain BH2(T) =DSM 16551(T) =JCM 13668(T)).
    • Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer.

      Fahy, A; Ball, A S; Lethbridge, G; Timmis, K N; McGenity, T J; Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK. afahy@essex.ac.uk (2008-07)
      AIMS: To isolate benzene-degrading strains from neutral and alkaline groundwaters contaminated by benzene, toluene, ethylbenzene, xylenes (BTEX) from the SIReN aquifer, UK, and to test their effective pH range and ability to degrade TEX. METHODS AND RESULTS: The 14 isolates studied had an optimum pH for growth of 8, and could degrade benzene to below detection level (1 microg l(-1)). Five Rhodococcus erythropolis strains were able to metabolize benzene up to pH 9, two distinct R. erythropolis strains to pH 10, and one Arthrobacter strain to pH 8.5. These Actinobacteria also degraded benzene at least down to pH 5.5. Six other isolates, a Hydrogenophaga and five Pseudomonas strains, had a narrower pH tolerance for benzene degradation (pH 6 to 8.5), and could metabolize toluene; in addition, the Hydrogenophaga and two Pseudomonas strains utilized o-, m- or p-xylenes. None of these strains degraded ethylbenzene. CONCLUSIONS: Phylogenetically distinct isolates, able to degrade BTX compounds, were obtained, and some degraded benzene at high pH. SIGNIFICANCE AND IMPACT OF THE STUDY: High pH has previously been found to inhibit in situ degradation of benzene, a widespread, carcinogenic groundwater contaminant. These benzene-degrading organisms therefore have potential applications in the remediation or natural attenuation of alkaline waters.
    • Pseudomonas aeruginosa strain RW41 mineralizes 4-chlorobenzenesulfonate, the major polar by-product from DDT manufacturing.

      Blasco, Rafael; Ramos, Juan-Luis; Wittich, Rolf-Michael; Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, E-10071 Cáceres, Spain. (2008-06)
      Pseudomonas aeruginosa RW41 is the first bacterial strain, which could be isolated by virtue of its capability to mineralize 4-chlorobenzenesulfonic acid (4CBSA), the major polar by-product of the chemical synthesis of 1,1,1-trichloro-2,2-bis-(4-chlorophenyl)ethane (DDT). This capability makes the isolate a promising candidate for the development of bioremediation technologies. The bacterial mineralization of 4CBSA proceeds under oxygenolytic desulfonation and transient accumulation of sulfite which then is oxidized to sulfate. High enzyme activities for the turnover of 4-chlorocatechol were measured. The further catabolism proceeded through 3-chloromuconate and, probably, the instable 4-chloromuconolactone, which is directly hydrolyzed to maleylacetate. Detectable levels of maleylacetate reductase were only present when cells were grown with 4CBSA. When the ordinary catechol pathway was induced during growth on benzenesulfonate, catechol was ortho-cleaved to cis,cis-muconate and a partially purified muconate cycloisomerase transformed it to muconolactone in vitro. The same enzyme transformed 3-chloro-cis,cis-muconate into cis-dienelactone (76%) and the antibiotically active protoanemonin (24%). These observations are indicative for a not yet highly evolved catabolism for halogenated substrates by bacterial isolates from environmental samples which, on the other hand, are able to productively recycle sulfur and chloride ions from synthetic haloorganosulfonates.
    • [Reaction of microorganisms to the digestive fluid of the earthworms]

      Khomiakov, N V; Kharin, S A; Nechitaĭlo, T Iu; Golyshin, P N; Kurakov, A V; Byzov, B A; Zviagintsev, D G; Helmholtz Centre for Infection Research (formerly GBF) (2008-03-05)
      The reaction of soil bacteria and fungi to the digestive fluid of the earthworm Aporrectodea caliginosa was studied. The fluid was obtained by centrifugation of the native enzymes of the digestive tract. The inhibition of growth of certain bacteria, spores, and fungal hyphae under the effect of extracts from the anterior and middle sections of the digestive tract of A. caliginosa was discovered for the first time. In bacteria, microcolony formation was inhibited as early as 20-30 s after the application of the gut extracts, which may indicate the nonenzymatic nature of the effect. The digestive fluid exhibited the same microbicidal activity whether the earthworms were feeding on soil or sterile sand. This indicates that the microbicidal agents are formed within the earthworm's body, rather than by soil microorganisms. The effect of the digestive fluid from the anterior and middle divisions is selective in relation to different microorganisms. Of 42 strains of soil bacteria, seven were susceptible to the microbicidal action of the fluid (Alcaligenes.faecalis 345-1, Microbacterium sp. 423-1, Arthrobacter sp. 430-1, Bacillus megaterium 401-1, B. megaterium 413-1, Kluyvera ascorbata 301-1, Pseudomonas reactans 387-2). The remaining bacteria did not die in the digestive fluid. Of 13 micromycetes, the digestive fluid inhibited spore germination in Aspergillus terreus and Paecilomyces lilacinus and the growth of hyphae in Trichoderma harzianum and Penicillium decumbens. The digestive fluid stimulated spore germination in Alternaria alternata and the growth of hyphae in Penicillium chrysogenum. The reaction of the remaining micromycetes was neutral. The gut fluid from the posterior division of the abdominal tract did not possess microbicidal activity. No relation was found between the reaction of microorganisms to the effects of the digestive fluid and the taxonomic position of the microorganisms. The effects revealed are similar to those shown earlier for millipedes and wood lice in the following parameters: quick action of the digestive fluid on microorganisms, and the selectivity of the action on microorganisms revealed at the strain level. The selective effect of the digestive gut fluid of the earthworms on soil microorganisms is important for animal feeding, maintaining the homeostasis of the gut microbial community, and the formation of microbial communities in soils.
    • Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments.

      Sass, Andrea M; McKew, Boyd A; Sass, Henrik; Fichtel, Jörg; Timmis, Kenneth N; McGenity, Terry J; Department of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK. sassam@Cardiff.ac.uk (2008)
      The deep-sea, hypersaline anoxic brine lakes in the Mediterranean are among the most extreme environments on earth, and in one of them, the MgCl2-rich Discovery basin, the presence of active microbes is equivocal. However, thriving microbial communities have been detected especially in the chemocline between deep seawater and three NaCl-rich brine lakes, l'Atalante, Bannock and Urania. By contrast, the microbiota of these brine-lake sediments remains largely unexplored.
    • Characterization and role of a metalloprotease induced by chitin in Serratia sp. KCK.

      Kim, Hyun-Soo; Golyshin, Peter N; Timmis, Kenneth N; Department of Environmental Microbiology, The Helmholtz Center for Infection Research, Braunschweig, Germany. hyun1006@korea.ac.kr (2007-11)
      A metalloprotease induced by chitin in a new chitinolytic bacterium Serratia sp. Strain KCK was purified and characterized. Compared with other Serratia enzymes, it exhibited a rather broad pH activity range (pH 5.0-8.0), and thermostability. The cognate ORF, mpr, was cloned and expressed. Its deduced amino acid sequence showed high similarity to those of bacterial zinc-binding metalloproteases and a well-conserved serralysin family motif. Pretreatment of chitin with the Mpr protein promoted chitin degradation by chitinase A, which suggests that Mpr participates in, and facilitates, chitin degradation by this microorganism.
    • Ultrastructural and electron energy-loss spectroscopic analysis of an extracellular filamentous matrix of an environmental bacterial isolate.

      Böckelmann, Uta; Lünsdorf, Heinrich; Szewzyk, Ulrich; Department of Environmental Microbiology, Technical University Berlin, Franklin Str. 29, 10587 Berlin, Germany. uta.boeckelmann@tu-berlin.de (2007-09)
      Strain F8, a bacterial isolate from 'river snow', was found to produce extracellular fibres in the form of a filamentous network. These extracellular filaments, which were previously shown to be composed of DNA, have been studied for the first time by ultrastructural and electron energy-loss spectroscopy in the present work. 'Whole mount' preparations of strain F8 indicate these polymers are ultrastructurally homogeneous and form a network of elemental filaments, which have a width of 1.8-2.0 nm. When incubated at pH 3.5 with colloidal cationic ThO(2) tracers they become intensely stained (electron dense), affording direct evidence that the fibres are negatively charged and thus acidic chemically. Elemental analysis of the extracellular filaments by Energy-filtered Transmission Electron Microscopy revealed phosphorus to be the main element present and, because pretreatment of F8 cells with DNase prevented thorium labelling, the fibres must be composed of extracellular DNA (eDNA). Neither ultrathin sections nor 'whole mount negative stain' caused DNA release by general cell lysis. Additionally, cells infected with phages were never observed in ultrathin sections and phage particles were never detected in whole mount samples, which rules out the possibility of phages being directly involved in eDNA release.
    • Obligate oil-degrading marine bacteria.

      Yakimov, Michail M; Timmis, Kenneth N; Golyshin, Peter N; Istituto per l'Ambiente Marino Costiero, CNR, Messina 98122, Italy. (2007-06)
      Over the past few years, a new and ecophysiologically unusual group of marine hydrocarbon-degrading bacteria - the obligate hydrocarbonoclastic bacteria (OHCB) - has been recognized and shown to play a significant role in the biological removal of petroleum hydrocarbons from polluted marine waters. The introduction of oil or oil constituents into seawater leads to successive blooms of a relatively limited number of indigenous marine bacterial genera--Alcanivorax, Marinobacter, Thallassolituus, Cycloclasticus, Oleispira and a few others (the OHCB)--which are present at low or undetectable levels before the polluting event. The types of OHCB that bloom depend on the latitude/temperature, salinity, redox and other prevailing physical-chemical factors. These blooms result in the rapid degradation of many oil constituents, a process that can be accelerated further by supplementation with limiting nutrients. Genome sequencing and functional genomic analysis of Alcanivorax borkumensis, the paradigm of OHCB, has provided significant insights into the genomic basis of the efficiency and versatility of its hydrocarbon utilization, the metabolic routes underlying its special hydrocarbon diet, and its ecological success. These and other studies have revealed the potential of OHCB for multiple biotechnological applications that include not only oil pollution mitigation, but also biopolymer production and biocatalysis.