This is the institutional Repository of the Helmholtz Centre for Infection Research in Braunschweig/Germany (HZI), the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken/Germany, the TWINCORE Zentrum für Exprerimentelle und Klinische Infektionsforschung, Hannover/Germany,Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), Braunschweig Integrated Centre for Systems biology (BRICS), Centre for Structural Systems Biology (CSSB) and the Study Centre Hannover, Hannover/Germany.

 

  • Community richness of amphibian skin bacteria correlates with bioclimate at the global scale.

    Kueneman, Jordan G; Bletz, Molly C; McKenzie, Valerie J; Becker, C Guilherme; Joseph, Maxwell B; Abarca, Juan G; Archer, Holly; Arellano, Ana Lisette; Bataille, Arnaud; Becker, Matthew; Belden, Lisa K; Crottini, Angelica; Geffers, Robert; Haddad, Célio F B; Harris, Reid N; Holden, Whitney M; Hughey, Myra; Jarek, Michael; Kearns, Patrick J; Kerby, Jacob L; Kielgast, Jos; Kurabayashi, Atsushi; Longo, Ana V; Loudon, Andrew; Medina, Daniel; Nuñez, José J; Perl, R G Bina; Pinto-Tomás, Adrián; Rabemananjara, Falitiana C E; Rebollar, Eria A; Rodríguez, Ariel; Rollins-Smith, Louise; Stevenson, Robert; Tebbe, Christoph C; Vargas Asensio, Gabriel; Waldman, Bruce; Walke, Jenifer B; Whitfield, Steven M; Zamudio, Kelly R; Zúñiga Chaves, Ibrahim; Woodhams, Douglas C; Vences, Miguel; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Dpringer-Nature, 2019-03-01)
    Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.
  • Virulence of Agrobacterium tumefaciens requires lipid homeostasis mediated by the lysyl-phosphatidylglycerol hydrolase AcvB.

    Groenewold, Maike K; Hebecker, Stefanie; Fritz, Christiane; Czolkoss, Simon; Wiesselmann, Milan; Heinz, Dirk W; Jahn, Dieter; Narberhaus, Franz; Aktas, Meriyem; Moser, Jürgen; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-01-01)
    Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.
  • 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action.

    Bestgen, Benoît; Kufareva, Irina; Seetoh, Weiguang; Abell, Chris; Hartmann, Rolf W; Abagyan, Ruben; Le Borgne, Marc; Filhol, Odile; Cochet, Claude; Lomberget, Thierry; Engel, Matthias; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2019-02-28)
    Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC
  • Immune Challenge Alters Reactivity of Hippocampal Noradrenergic System in Prenatally Stressed Aged Mice.

    Grigoryan, Gayane; Lonnemann, Niklas; Korte, Martin; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Hindawi, 2019-01-01)
    Prenatal stress (PS) has long-term sequelae for the morphological and functional status of the central nervous system of the progeny. A PS-induced proinflammatory status of the organism may result in an impairment of both hippocampal synaptic plasticity and hippocampus-dependent memory formation in adults. We addressed here the question of how PS-induced alterations in the immune response in young and old mice may contribute to changes in hippocampal function in aging. Immune stimulation (via
  • Kynurenine is a cerebrospinal fluid biomarker for bacterial and viral CNS infections.

    Sühs, Kurt-Wolfram; Novoselova, Natalia; Kuhn, Maike; Seegers, Lena; Kaever, Volkhard; Müller-Vahl, Kirsten; Trebst, Corinna; Skripuletz, Thomas; Stangel, Martin; Pessler, Frank; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7,30625 Hannover, Germany. (Oxford University Press, 2019-02-05)
    The tryptophan-kynurenine-NAD+ pathway is closely associated with regulation of immune cells toward less inflammatory phenotypes and may exert neuroprotective effects. Investigating its regulation in CNS infections would improve our understanding of pathophysiology and end-organ damage, and, furthermore, open doors to its evaluation as a source of diagnostic and/or prognostic biomarkers. We measured concentrations of kynurenine (Kyn) and tryptophan (Trp) in 220 cerebrospinal fluid samples from patients with bacterial and viral (herpes simplex, varicella zoster, enteroviruses) meningitis/encephalitis, neuroborreliosis, autoimmune neuroinflammation (anti-NMDA-R encephalitis, multiple sclerosis), and noninflamed controls (Bell's palsy, normal pressure hydrocephalus, Tourette syndrome). Kyn concentrations correlated strongly with CSF markers of neuroinflammation (leukocyte count, lactate, and blood-CSF-barrier dysfunction) and were highly increased in bacterial and viral CNS infections, but were low or undetectable in anti-NMDA-R encephalitis, multiple sclerosis, and controls. Trp was decreased mostly in viral CNS infections and neuroborreliosis. Multiple logistic regression analysis revealed combinations of Kyn, Trp and Kyn/Trp ratio with leukocyte count or lactate as accurate classifiers for the clinically important differentiation between neuroborreliosis, viral CNS infections, and autoimmune neuroinflammation. The Trp-Kyn-NAD+ pathway is activated in CNS infections and provides highly accurate CSF biomarkers, particularly when combined with standard CSF indices of neuroinflammation.

View more