This is the institutional Repository of the Helmholtz Centre for Infection Research in Braunschweig/Germany (HZI), the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken/Germany, the TWINCORE Zentrum für Exprerimentelle und Klinische Infektionsforschung, Hannover/Germany,Helmholtz-Institut für RNA-basierte Infektionsforschung (HIRI), BRICS, CSSB and the Study Centre Hannover, Hannover/Germany.

 

  • A guiding map for inflammation.

    Netea, Mihai G; Balkwill, Frances; Chonchol, Michel; Cominelli, Fabio; Donath, Marc Y; Giamarellos-Bourboulis, Evangelos J; Golenbock, Douglas; Gresnigt, Mark S; Heneka, Michael T; Hoffman, Hal M; Hotchkiss, Richard; Joosten, Leo A B; Kastner, Daniel L; Korte, Martin; Latz, Eicke; Libby, Peter; Mandrup-Poulsen, Thomas; Mantovani, Alberto; Mills, Kingston H G; Nowak, Kristen L; O'Neill, Luke A; Pickkers, Peter; van der Poll, Tom; Ridker, Paul M; Schalkwijk, Joost; Schwartz, David A; Siegmund, Britta; Steer, Clifford J; Tilg, Herbert; van der Meer, Jos W M; van de Veerdonk, Frank L; Dinarello, Charles A; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-19)
    Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.
  • The chromatin remodeling factor SPOC1 acts as a cellular restriction factor against human cytomegalovirus by repressing the major immediate-early promoter.

    Reichel, Anna; Stilp, Anne-Charlotte; Scherer, Myriam; Reuter, Nina; Lukassen, Sören; Kasmapour, Bahram; Schreiner, Sabrina; Cicin-Sain, Luka; Winterpacht, Andreas; Stamminger, Thomas; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-09)
    The cellular protein SPOC1 (survival time-associated PHD finger protein in ovarian cancer 1) acts as a regulator of chromatin structure and DNA damage response. It binds H3K4me2/3 containing chromatin and promotes DNA condensation by recruiting corepressors such as KAP-1 and H3K9 methyltransferases. Previous studies identified SPOC1 as a restriction factor against human adenovirus (HAdV) infection that is antagonized by E1B-55K/E4orf6-dependent proteasomal degradation. Here, we demonstrate that, in contrast to HAdV-infected cells, SPOC1 is transiently upregulated during the early phase of HCMV replication. We show that expression of the immediate-early protein 1 (IE1) is sufficient and necessary to induce SPOC1. Additionally, we discovered that during later stages of infection SPOC1 is downregulated in a GSK-3β-dependent manner. We provide evidence that SPOC1 overexpression severely impairs HCMV replication by repressing the initiation of viral immediate early (IE) gene expression. Consistently, we observed that SPOC1-depleted primary human fibroblasts displayed augmented initiation of viral IE gene expression. This occurs in a MOI-dependent manner, a defining hallmark of intrinsic immunity. Interestingly, repression requires the presence of high SPOC1 levels at the start of infection while a later upregulation had no negative impact suggesting distinct temporal roles of SPOC1 during the HCMV replicative cycle. Mechanistically, we observed a highly specific association of SPOC1 with the major immediate-early promoter (MIEP) strongly suggesting that SPOC1 inhibits HCMV replication by MIEP binding and subsequent recruitment of heterochromatin building factors. Thus, our data add SPOC1 as a novel factor to the endowment of a host cell to restrict cytomegalovirus infections.
  • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

    Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
    During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
  • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

    Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
    During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
  • Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica.

    Wheeler, Nicole E; Gardner, Paul P; Barquist, Lars; HIRI, Helmoltz-Institut für RNA-basierteInfektionsforschung, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany. (2018-01-01)
    Emerging pathogens are a major threat to public health, however understanding how pathogens adapt to new niches remains a challenge. New methods are urgently required to provide functional insights into pathogens from the massive genomic data sets now being generated from routine pathogen surveillance for epidemiological purposes. Here, we measure the burden of atypical mutations in protein coding genes across independently evolved Salmonella enterica lineages, and use these as input to train a random forest classifier to identify strains associated with extraintestinal disease. Members of the species fall along a continuum, from pathovars which cause gastrointestinal infection and low mortality, associated with a broad host-range, to those that cause invasive infection and high mortality, associated with a narrowed host range. Our random forest classifier learned to perfectly discriminate long-established gastrointestinal and invasive serovars of Salmonella. Additionally, it was able to discriminate recently emerged Salmonella Enteritidis and Typhimurium lineages associated with invasive disease in immunocompromised populations in sub-Saharan Africa, and within-host adaptation to invasive infection. We dissect the architecture of the model to identify the genes that were most informative of phenotype, revealing a common theme of degradation of metabolic pathways in extraintestinal lineages. This approach accurately identifies patterns of gene degradation and diversifying selection specific to invasive serovars that have been captured by more labour-intensive investigations, but can be readily scaled to larger analyses.

View more