This is a postprint of an article published in
Schulze, J.O., Schubert, W.-D., Moser, J., Jahn, D., Heinz, D.W.
Evolutionary Relationship between Initial Enzymes of Tetrapyrrole
Biosynthesis
Evolutionary Relationship between Initial Enzymes of Tetrapyrrole Biosynthesis

Jörg O. Schulze1, Wolf-Dieter Schubert1, Jürgen Moser2, Dieter Jahn2, Dirk W. Heinz1,*

1Division of Structural Biology, German Research Centre for Biotechnology (GBF), Mascheroder Weg 1, D-38124 Braunschweig, Germany
2Institute of Microbiology, Technical University Braunschweig, Spielmannstr. 7, D-38106 Braunschweig, Germany

*Corresponding author; E-mail: dih@gbf.de

\textit{Running title:} Initial Enzymes of Tetrapyrrole Biosynthesis
Summary

Glutamate-1-semialdehyde 2,1-aminomutase (GSAM) is the second enzyme in the C₅ pathway of tetrapyrrole biosynthesis found in most bacteria, in archaea and in plants. It catalyzes the transamination of glutamate-1-semialdehyde to 5-aminolevulinic acid (ALA) in a pyridoxal 5’-phosphate-(PLP)-dependent manner. We present the crystal structure of GSAM from the thermophilic cyanobacterium Thermosynechococcus elongatus (GSAM₆₆₅) in its PLP-bound form at 2.8 Å resolution. GSAM₆₆₅ is a symmetric homodimer, whereas GSAM from Synechococcus (GSAM₅₆₅) was previously described as asymmetric. The symmetry of GSAM₆₆₅ thus challenges the previously proposed negative cooperativity between monomers of this enzyme. Furthermore, GSAM₆₆₅ reveals an extensive flexible region at the interface of the proposed complex of GSAM with glutamyl-tRNA reductase (GluTR), the preceding enzyme in tetrapyrrole biosynthesis. Compared to GSAM₅₆₅, the monomers of GSAM₆₆₅ are rotated away from each other along the dimerization interface by 10°. The associated flexibility of GSAM may be essential for complex formation with GluTR to occur.

Unexpectedly, we find that GSAM is structurally related to 5-aminolevulinate synthase (ALAS), the ALA producing enzyme in the Shemin pathway of α-proteobacteria and non-plant eukaryotes. This structural relationship also applies to the corresponding subfamilies of PLP-dependent enzymes. We thus propose that the CoA-subfamily (including ALAS) and the aminotransferase subfamily II (including GSAM) are evolutionarily closely related and that ALAS may thus have evolved from GSAM.

215 words (not more than 300 words)
Keywords: glutamate-1-semialdehyde 2,1-aminomutase, 5-aminolevulinate synthase, crystal structure, heme biosynthesis, aminotransferase
Introduction

The structural core of all tetrapyrroles, including essential cofactors such as heme, chlorophyll and vitamin B$_{12}$, is assembled from eight molecules of 5-aminolevulinic acid (ALA), the first common precursor of all tetrapyrroles. ALA was initially found to be synthesized from glycine and succinyl-coenzyme A by 5-aminolevulinate synthase (ALAS, EC 2.3.1.37) as part of the Shemin pathway.1; 2 Much later the enzyme ALAS was found to be restricted to α-proteobacteria and non-plant eukaryotes. All other bacteria, archaea and plants produce ALA through the C$_5$ pathway using tRNA-bound glutamate as substrate.3; 4 The thereby activated glutamate is first reduced to glutamate-1-semialdehyde (GSA) by the NADPH-dependent glutamyl-tRNA reductase (GluTR, EC 1.2.1.70)5, and GSA is then rearranged to ALA by glutamate-1-semialdehyde 2,1-aminomutase (GSAM; EC 5.4.3.8)6. As animals and humans lack these enzymes, they are potential targets for herbicides and antibacterial agents.

GSAM, a homodimer, is a member of the α family of PLP-dependent enzymes.7 Although it functions as a mutase, catalyzing the exchange of amino and oxo groups in GSA, GSAM is structurally8 and mechanistically6; 9; 10 an aminotransferase. One proposed reaction mechanism requires the cofactor to initially be present as pyridoxamine 5’-phosphate (PMP).9; 10 Transfer of the amino group to atom C$_5$ of GSA produces the intermediate 4,5-diaminovalerate (DAVA) and PLP (Figure 1), while abstraction of the C$_4$ amino group finally yields ALA and regenerates PMP. An alternative mechanism starts with the PLP form of the enzyme and proceeds via a PMP-bound enzyme and 4,5-dioxovalerate (DOVA) as intermediate.6 All analyzed GSAM enzymes were found capable of catalyzing both reactions, however, kinetic studies indicate a preference for the first described mechanism in Synechococcus.9; 10

GSA, a highly reactive α-amino aldehyde, has a half-life of \sim3 min under physiological conditions.11 Based on the crystal structures of GluTR from Methanopyrus kandleri12 and GSAM from Synechococcus (GSAM$_\text{Syn}$)8 we have previously proposed that both dimeric enzymes form a complex allowing GSA to channel directly from GluTR to GSAM ensuring
efficient synthesis of ALA and minimizing the loss of this unstable intermediate.12 We and others have confirmed the existence of this complex for the enzymes from \textit{Escherichia coli}13 and \textit{Chlamydomonas reinhardtii}, respectively14

Here we present the crystal structure of GSAM from \textit{Thermosynechococcus elongatus} (GSAM\textsubscript{Tel}) in its PLP-bound form at 2.8 \AA{} resolution. In contrast to the asymmetric homodimer from \textit{Synechococcus} (GSAM\textsubscript{Syn}), GSAM\textsubscript{Tel} is perfectly symmetric. An extensive flexible region covering the active site is located at the proposed binding interface with GluTR. Based on the unexpected structural similarity of GSAM\textsubscript{Tel} to 5-aminolevulinate synthase (ALAS), we propose an evolutionary relationship between the ALA-generating enzymes of the independent C\textsubscript{5} and Shemin pathways.
Results

Overall structure

GSAM from the thermophilic cyanobacterium *Thermosynechococcus elongatus* (GSAM$_{Tel}$) was cloned, produced, purified and crystallized as described in Materials and Methods. The structure was solved by molecular replacement using the structure of GSAM from *Synechococcus* (GSAM$_{Syn}$) (PDB-code 2GSA) and refined to a resolution of 2.8 Å. Data collection and refinement statistics are summarized in Table 1. In agreement with previous studies, dynamic light scattering and analytical gel filtration confirm GSAM$_{Tel}$ to be a structural dimer. Crystal packing analyses revealed only one GSAM$_{Tel}$ monomer (415 residues) per asymmetric unit. Two crystallographically related monomers thus constitute a symmetric homodimer for GSAM$_{Tel}$—compared to the asymmetric GSAM$_{Syn}$ dimer.

Fig. 2(a) Each GSAM monomer consists of three domains (Figure 2a): a small N-terminal domain (residues 1-48) encompassing a three-stranded, antiparallel β-sheet; a catalytic domain (residues 49-304) dominated by a seven-stranded β-sheet (β-strand order 3245671 where only strand 7 is antiparallel) flanked on either side by α-helices; and a C-terminal domain (residues 305-411) including a three-stranded antiparallel β-sheet and four α-helices. The symmetrically positioned active sites, identified by the bound cofactor PLP, are located at the dimer interface.

A root-mean-square deviation of 0.7 Å for 360 common C$_\alpha$ atoms underscores the similarity (77% sequence identity) of GSAM$_{Tel}$ and GSAM$_{Syn}$. The topology of GSAM is, furthermore, clearly related to that of other members of the AT II subfamily of PLP-dependent enzymes such as 4-aminobutyrate aminotransferase and dialkylglycine decarboxylase.

Cofactor binding

UV-visible absorption spectroscopy of GSAM$_{Tel}$ indicates that the cofactor is lost during purification. Although both PMP and PLP had been added to the protein in sufficient amounts
to allow active-site saturation prior to crystallization, only PLP is observed within the active site. PLP is covalently linked to the catalytic residue Lys251 constituting the “internal aldime” (Figure 2(b)). Correspondingly, the pyridinium ring of PLP adopts an orientation characteristic for lysine-bound PLP. Bound PMP, in contrast, is usually tilted by 20-30° moving the amino group away from the catalytic lysine as observed in the PMP-containing subunit of GSAM$_{Syn}$ and aspartate aminotransferase18. The phosphate group of PLP is recognized via hydrogen bonds to Gly101-N, Thr102-N, Thr102-O, and to a water molecule. The pyridinium ring of PLP is sandwiched between Val225 and Tyr128 in such a way that the phenoxy ring of Tyr128 is almost perpendicular to the pyridinium ring (Figure 2(b)), a distinctive feature of GSAM and closely related aminotransferases$^{16; 19}$. A salt bridge to atom O$_{δ2}$ of Asp223, an invariant residue in all aminotransferases$^{20; 21}$, ensures that PLP-N$_1$ remains protonated strengthening the electron withdrawing capacity of the cofactor$^{22; 23}$. Residues from the second monomer that normally participate in PLP-binding24 are disordered in GSAM$_{Tel}$ (see below).

Loops covering the active sites are flexible in the GSAM$_{Tel}$ dimer

Discontinuous electron density for three mutually adjacent loops (residues 1-18, 132-159 and 278–282) indicates that they are disordered in the GSAM$_{Tel}$ crystal. Excluding these loops from the refined structure results in a deep cleft at the dimer interface exposing both active sites (Figure 2(c)). One of the loops (132-159) was similarly found to be disordered in subunit B of GSAM$_{Syn}$ (153-181) while it is ordered in subunit A. In addition, the disordered 18 N-terminal residues of GSAM$_{Tel}$ correspond to residues 30-42 of GSAM$_{Syn}$, observed to show different backbone conformations in subunits A and B8. Val31 and Arg32 of GSAM$_{Syn}$ delimit the substrate-binding pocket. Arg32, an invariant residue in GSAM from all species, presumably binds the carboxylate group of the substrate GSA.8
Quaternary structures of GSAM$_{Tel}$ and GSAM$_{Syn}$ differ

The r.m.s. deviation GSAM$_{Tel}$- and GSAM$_{Syn}$-monomers following their superposition is 0.7 Å (see above). The corresponding value for the dimers is 2.1 Å. This noticeably larger value for the dimer is caused by an “opening up” by about 10° of the GSAM$_{Tel}$ dimer relative to GSAM$_{Syn}$ (Figure 2(d)). While the separation and mutual orientation of α-helices $\alpha 2$ and $\alpha 2^*$ (* for the second monomer), located near the two-fold dimer axis, are quite similar in both proteins, adjoining regions are progressively further apart in moving away from the fulcrum positioned near $\alpha 2$ and $\alpha 2^*$. The largest difference of 6 Å between GSAM$_{Tel}$ than GSAM$_{Syn}$ is observed for residues located in α-helices $\alpha 5$ and $\alpha 5^*$.

Discussion

GSAM is an unusually flexible aminotransferase

GSAM$_{Tel}$ is a symmetric, PLP-binding dimer with equally disordered regions in both subunits. In the asymmetric GSAM$_{Syn}$ the PLP-binding monomer B has a similarly disordered lid25, while the lid is closed and well-ordered in PMP-binding monomer A.8 This observation of PLP in combination with a disordered or “open” lid is unexpected as the catalyzed reaction for GSAM$_{Syn}$ is believed to be initiated by PMP9;10 (Figure 1), while the closed, PMP-bound state would interfere both with substrate uptake and product release. In the PLP-bound form, corresponding to a reaction intermediate, GSAM$_{Syn}$ adopts an “open” conformation allowing for the potential loss of the product-intermediate 4,5-diaminovalerate arresting the enzyme in its PLP form. Monomers were suggested to show negative cooperativity8, ensuring that one monomer remains in the closed and PMP-bound conformation while the other is open and binds PLP. The symmetric GSAM$_{Tel}$, however, challenges the proposed negative cooperativity as both monomers can clearly adopt the same state simultaneously. This is supported by the observation that GSAM$_{Tel}$ exclusively binds PLP, despite PMP and PLP
having been added. PLP may have a higher binding affinity than PMP because of Schiff base formation, whereas PMP does not bind covalently. This finding supports an alternative mechanism suggested for GSAM, where catalysis starts with the enzyme in its PLP form abstracting the amino-group of GSA and yielding 4,5-dioxovalerate as product intermediate (Figure 1)\(^6\). Only crystals of intermediate or inhibitor complexes, or further spectroscopic data would allow the true mechanism to be established.

The asymmetry of GSAM\(_{Syn}\), the symmetry of the closely related GSAM\(_{Tel}\), and the open conformation of the latter, indicate that uncomplexed GSAM is unusually flexible compared to other PLP-dependent enzymes.

The flexible region is located in the putative GluTR binding interface

In a proposed model of a GluTR/GSAM complex, we placed GSAM\(_{Syn}\)\(^8\) into the V-shaped GluTR-dimer from *Methanopyrus kandleri*\(^12\) *inter alia* to allow for substrate channeling between the two enzymes of the C\(_5\) pathway\(^13; 14\). Replacing GSAM\(_{Syn}\) by GSAM\(_{Tel}\) in this model, results in the flexible lids of GSAM\(_{Tel}\) being positioned at the interface with GluTR (Figure 3) opposite the “back door” of GluTR\(^12\). GluTR would therefore potentially stabilize the flexible loops of GSAM and establish a substrate channel that enables efficient transfer of the reactive intermediate GSA between the active sites of both enzymes. Complex formation of GSAM with GluTR may also prevent loss of the proposed reaction intermediate 4,5-diaminovalerate, as is observed to an significant extent in *in vitro* analyses of isolated GSAM\(^26\).

The open conformation of GSAM\(_{Tel}\) allows it to be accommodated within the V-shaped GluTR with less steric hindrance than GSAM\(_{Syn}\) implying that flexibility of GSAM is a necessary feature for complex formation. Instead of acting as an active-site lid, the flexible regions of GSAM would facilitate complex formation with GluTR creating the connecting substrate channel in the process.
Structural homology of GSAM and ALAS

We recently reported the crystal structure of 5-aminolevulinate synthase (ALAS)27 from \textit{Rhodobacter capsulatus} (Figure 4(a)). ALAS, like GSAM, produces ALA. It utilizes the substrates glycine and succinyl-coenzyme A rather than glutamate-1-semialdehyde (GSA). This route constitutes the Shemin pathway of ALA-synthesis found in non-plant eukaryotes and α-proteobacteria. Mechanistically, ALAS belongs to the CoA subfamily of the α family of PLP-dependent enzymes7 and is hence structurally closely related to 2-amino-3-ketobutyrate CoA ligase (KBL)28 and 8-amino-7-oxononanoate synthase (AONS)29, two members of this subfamily (Table 2). Despite a sequence identity of only 18%, GSAM is the next closest structural neighbor of ALAS (Figure 4(b)). This is unexpected, as GSAM belongs to the subfamily AT II of the α family, proposed to be only distantly related to the CoA subfamily7.

The overall structural similarity of GSAM and ALAS includes the substrate-binding pockets where both enzymes share a conserved arginine residue required for substrate binding (Arg21 in ALAS, Arg32 in GSAM\textsubscript{Syn}, Arg10 in GSAM\textsubscript{Tel}). Differences are restricted to the active sites and substrate channels, and include a significantly shorter loop near the active site compared to the long, flexible lid in GSAM (residues 132-159)8; 25. As a result ALAS possesses a distinct active-site channel and a hydrophobic binding pocket for the 3’-phosphate ADP moiety of succinyl-CoA. The N-terminal stretches (residues 1-23 in ALAS and 1-18 in GSAM) also deviate significantly. In ALAS an α-helix wraps around the second subunit stabilizing the interface, while in GSAM α-helix α1 folds back onto the same subunit8.

CoA- and AT II-subfamilies of PLP-dependent enzymes are evolutionary neighbors

PLP-dependent enzymes of four structurally unrelated families have been identified30. Elaborate evolutionary pedigrees for each family have been proposed based on family profile analysis and protein structure.7 Within the α family, CoA-utilizing enzymes constitute the CoA subfamily and were found to be most closely related to the γ subfamily and more
distantly to subfamilies AT I and IV (Figure 4(c)). The AT II subfamily, of which GSAM is a member, was found to be more distantly related to the CoA subfamily.

The high structural similarity of ALAS (CoA subfamily) and GSAM (AT II subfamily) implies a close evolutionary relationship that does not fit the above classification. Strikingly, both enzymes synthesize the identical product as part of the two alternate pathways initiating tetrapyrrole biosynthesis. Structural comparison analyses (DALI Z-scores, Table 2) indicate that enzymes of the CoA subfamily are, in fact, more similar to AT II enzymes than to members of subfamilies γ, AT I or AT IV (Figure 4(d)-(f)). Structural analysis of AONS (CoA subfamily) identified dialkylglycine decarboxylase, an AT II-enzyme, as the closest structural and possibly evolutionary neighbor. Later, 7,8-diaminopelargonic acid (DAPA) synthase (AT II) was found to be structurally similar to AONS (CoA), the preceding enzyme in biotin biosynthesis, again indicating a close evolutionary relationship. All members of both subfamilies share a unique 3-stranded β-meander in the N-terminal domain not present in enzymes of the other subfamilies.

In summary, we suggest that within the classification of PLP-dependent enzymes by Mehta & Christen, the CoA subfamily needs to be re-assigned to the branch of the evolutionary tree accommodating subfamily AT II (Figure 4(c)).
ALAS evolved from GSAM

ALAS and GSAM, enzymes of two related, yet independent pathways, synthesize the same product. As part of the Shemin pathway, ALAS is highly conserved between α-proteobacteria as well as unicellular and multicellular eukaryotes. GSAM as part of the C₅ pathway is found in all plants, archaea and eubacteria, except α-proteobacteria. As a presumed remnant of the RNA world, the glutamyl-tRNA substrate of GluTR, the first enzyme of the C₅ pathway, indicates this pathway to be particularly ancient. Succinyl-coenzyme A, appearing late in the evolution of the Krebs cycle (itself younger than the biosynthesis of tetrapyrroles) would be much younger.

The C₅ pathway (including GSAM) must hence be significantly older than the Shemin pathway (ALAS). Assuming that the C₅ pathway evolved into the latter would require the conversion of GSAM into ALAS but would eliminate the enzyme GluTR of the C₅ pathway. It would furthermore decouple heme biosynthesis from protein biosynthesis, making heme biosynthesis dependent on the metabolically more central Krebs cycle instead. Only after the evolution of the Shemin pathway, will an α-proteobacterium have given rise to the eukaryotic mitochondrion, as propounded by the endosymbiotic theory. Together with other genes of energy metabolism or cofactor biosynthesis, the gene for ALAS would have been transferred to the nuclear genome, requiring the unfolded enzyme in turn to be translocated across the outer and inner mitochondrial membranes before adopting its productive state in the mitochondrial lumen.
Materials and Methods

Cloning, production and purification of GSAM

The gene for GSAM (hemL) of *Thermosynechococcus elongatus* strain BP-1 was amplified from genomic DNA and cloned into the *Neol/BamHI* sites of the *E. coli* expression vector pETM30 to produce a C-terminal GST-fusion protein. The plasmid was transformed into *E. coli* BL21 CodonPlus cells (Stratagene), cultivated in LB medium containing 30 µg/ml kanamycin at 37°C to an OD$_{600}$ of 0.6. The temperature was lowered to 20°C, protein production induced by 100 µM isopropyl-β-D-thiogalactopyranosid and cells cultivated for 20 h. Cells were harvested by centrifugation, disrupted by French press and cell debris removed by centrifugation at 4°C. GSAM$_{Tel}$-GST was isolated from the soluble fraction by glutathion sepharose affinity chromatography and enzymatically cleaved with TEV-protease. GSAM$_{Tel}$ was purified by anion exchange (MonoQ HR 10/10, Amersham Biosciences) and gel filtration chromatography (Superdex 200 26/60, Amersham Biosciences). The purified protein in 20 mM Hepes pH 7.9, 20 mM NaCl and 10 mM DTT was concentrated to 10 mg/ml using a Vivaspin 20 centrifugal concentrator (Vivascience). The yield was ~25 mg of pure protein per liter of bacterial culture. Protein integrity and purity were verified using SDS-PAGE, N-terminal protein sequencing, dynamic light scattering and mass-spectrometry.

Crystallization

GSAM was crystallized by hanging drop vapor diffusion at 4°C. 3 µl of protein (containing 1 mM of both PMP and PLP) was added to 3 µl of reservoir solution (100 mM Pipes pH 6.5, 200 mM Mg sulfate and 17% PEG 3350). Crystals grew to a size of 400 x 150 x 150 µm3 within 3 weeks. Prior to X-ray data collection 20% (v/v) ethylene glycol was added for cryo-protection. Crystals belong to space group P4$_1$2$_1$2 with cell constants a = b = 109.5 Å and c = 95.4 Å. A V_M^{38} of 3.26 Å3/Da indicated the presence of one GSAM monomer per asymmetric
unit, corresponding to a solvent content of 62%. Data reduction in a space group of lower symmetry, e.g. P4₁, did not result in better data statistics or improved electron density.

Data collection, structure determination and analysis

X-ray diffraction data were collected using a RU-H3R rotating anode X-ray generator and an R-axis IV++ detector (MSC-Rigaku). Data were processed and scaled using the XDS program package. GSAMₜₙ (PDB-code 2GSA, monomer A) was used as a model for molecular replacement in EPMR. Rigid body and simulated annealing refinement was performed using CNS, while REFMAC5 including TLS-refinement protocols was used for subsequent refinement. Coot was used for manual model building and structural analysis, WHAT IF and Procheck for structure validation, and PyMOL for molecular depictions. LSQKAB of the CCP4 program suite was used for structural superpositions and ClustalW for sequence alignments, and DALI for structure-based sequence alignments.

Accession number

The coordinates of the structure have been deposited in the Protein Data Bank (Entry code: XXX) and will be released upon publication.
Acknowledgements

We thank Dr. Joop van den Heuvel for help in cloning and protein purification techniques. We are indebted to Dr. Günter Stier (EMBL, Heidelberg) for providing us with the pETM30 vector. This work was funded by the Deutsche Forschungsgemeinschaft (DFG) to D.W.H. (He 1852/5-3) and D.J. (Ja 470/7-3).
References

Figure Legends

Figure 1: Scheme of the reaction catalyzed by GSAM. Glutamate-1-semialdehyde (GSA) is converted to 5-aminolevulinic acid (ALA) via the intermediate 4,5-diaminoovalerate (DAVA). During the first half of the reaction pyridoxamine 5'-phosphate (PMP) is converted to pyridoxal 5'-phosphate (PLP), in the second half PMP is regenerated. An alternative mechanism (dotted arrows) proceeds via the intermediate 4,5-dioxovalerate (DOVA; gray). Here, PLP is converted to PMP and regenerated upon ALA formation.

Figure 2: Structure of GSAM from *Thermosynechococcus elongatus* (GSAM$_{Tel}$). One subunit of the homodimer is colored in yellow, the color of the second subunit changes from light blue for the N-terminus to dark blue for the C-terminus. (a) Cartoon representation with the cofactor PLP (green) depicted in ball-and-stick representation, carbon in green, oxygen in red, nitrogen in blue, phosphorus in orange. (b) Electron density of the “internal aldimine” consisting of PLP (green) covalently bound to Lys251. Only residues in contact with PLP are shown. (c) Surface representation with unresolved residues modeled in and shown in transparent colors. The orange residues belong to the yellow subunit, the cyan residues to the blue monomer. The molecule is rotated by 90° along the dimerization interface of Figure 2(a). (d) Structures of GSAM$_{Tel}$ (blue and yellow) and GSAM$_{Syn}$ (green and gray) superimposed on the subunit in the back. The lines subtending an angle of 10° indicate a rotational displacement of the subunit of GSAM$_{Tel}$ in the front in comparison to GSAM$_{Syn}$. The figures were produced using PyMOL46.

Figure 3: Model of the proposed complex between GSAM$_{Tel}$ and glutamyl-tRNA reductase (GluTR) from *Methanopyrus kandleri*.12 GluTR is shown in green as cartoon representation.
and GSAM$_{Tel}$ as in Figure 2(b). The red arrow indicates the direction of the flexible movement in GSAM$_{Tel}$. The co-crystallized GluTR inhibitor glutamycin is shown as ball-and-stick representation with carbon atoms in green. The substrate channeling between the active sites of both enzymes is indicated by a green arrow.

Figure 4: Structural comparison of PLP-dependent enzymes of the α family in cartoon representation with PLP in ball-and-stick representation (a) Structure of the 5-aminolevulinic acid synthase (ALAS) homodimer from *Rhodobacter capsulatus* with one subunit colored in gray and the other subunit in shades of orange. (b) Structure of GSAM$_{Tel}$, rotated by 90° along the dimerization interface of Figure 2(a). (c) Evolutionary pedigree of α-family PLP-dependent enzymes according to Mehta and Christen7. The previous position of the CoA subfamily is depicted in gray; the suggested new location is shown in red. (d)-(f) Structures of aspartate aminotransferase50, serine hydroxymethyltransferase and kynureninase, the enzymes of subfamilies AT I, AT IV and γ resulting in the highest Z-scores when compared to ALAS. One subunit is rendered in green, the other subunit in yellow.
Tables

Table 1: Data collection and structure determination statistics

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit cell dimensions, a, b, c (Å)</td>
<td>108.9, 108.9, 93.4</td>
</tr>
<tr>
<td>Space group</td>
<td>P4_{1}2_{1}2</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>1.54</td>
</tr>
<tr>
<td>Number of unique reflections</td>
<td>26282</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>50-2.8 (2.9-2.8)</td>
</tr>
<tr>
<td>Completeness of data (%)</td>
<td>99.5 (99.7)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>4.2 (4.2)</td>
</tr>
<tr>
<td>R_{merge} (%)</td>
<td>15.0 (47.1)</td>
</tr>
<tr>
<td>I/σ (%)</td>
<td>10.0 (3.0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Refinement statistics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum resolution (Å)</td>
<td>2.85 (2.92-2.85)</td>
</tr>
<tr>
<td>No. of atoms: protein, cofactor, water</td>
<td>2716, 15, 13</td>
</tr>
<tr>
<td>Monomers per asymmetric unit</td>
<td>1</td>
</tr>
<tr>
<td>R-factor (%)</td>
<td>17.7 (28.8)</td>
</tr>
<tr>
<td>R_{free} (%)</td>
<td>21.7 (22.8)</td>
</tr>
<tr>
<td>Average B-factor (Å²)</td>
<td>32.2</td>
</tr>
<tr>
<td>R.m.s.d. bond length (Å)</td>
<td>0.02</td>
</tr>
<tr>
<td>R.m.s.d. bond angles (°)</td>
<td>1.63</td>
</tr>
<tr>
<td>Ramachandran plot#</td>
<td>88.3/10.4/1.3/0.0</td>
</tr>
</tbody>
</table>

Values in parentheses refer to shell of highest resolution.

Procheck45: most favored/additionally allowed/generously allowed/disallowed regions
Table 2: Enzymes structurally most similar to ALAS

<table>
<thead>
<tr>
<th>enzyme</th>
<th>PDB-ID</th>
<th>DALI Z-score</th>
<th>r.m.s.d.(^{#}) (Å)</th>
<th>number of equivalent amino acids</th>
<th>sequence identity (%)</th>
<th>aminotransferase subfamily</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-amino-3-ketobutyrate CoA ligase</td>
<td>1FC4</td>
<td>49.7</td>
<td>1.6</td>
<td>377</td>
<td>32</td>
<td>CoA</td>
</tr>
<tr>
<td>8-amino-7-oxoanoate synthase</td>
<td>1BS0</td>
<td>48.4</td>
<td>2.2</td>
<td>380</td>
<td>28</td>
<td>CoA</td>
</tr>
<tr>
<td>glutamate-1-semialdehyde aminotransfer</td>
<td>2GSA</td>
<td>30.5</td>
<td>2.9</td>
<td>343</td>
<td>18</td>
<td>AT II</td>
</tr>
<tr>
<td>2,2-dialkylglycine decarboxylase</td>
<td>2DKB</td>
<td>29.0</td>
<td>3.7</td>
<td>345</td>
<td>14</td>
<td>AT II</td>
</tr>
<tr>
<td>adenosylmethionine 8-amino-oxononanoate aminotransfer</td>
<td>1DTY</td>
<td>27.7</td>
<td>3.1</td>
<td>338</td>
<td>15</td>
<td>AT II</td>
</tr>
<tr>
<td>serine hydroxymethyltransferase</td>
<td>1BJ4</td>
<td>25.9</td>
<td>3.6</td>
<td>327</td>
<td>15</td>
<td>AT IV</td>
</tr>
<tr>
<td>aspartate aminotransferase</td>
<td>1BJW</td>
<td>25.8</td>
<td>4.7</td>
<td>326</td>
<td>15</td>
<td>AT I</td>
</tr>
<tr>
<td>kynureninase</td>
<td>1QZ9</td>
<td>23.5</td>
<td>3.5</td>
<td>308</td>
<td>15</td>
<td>γ</td>
</tr>
</tbody>
</table>

\(^{\#}\) root-mean-square deviations for common C\(_a\) atoms of one monomer as calculated by DALI\(^{49}\)