This is a pre- or post-print of an article published in
Reduced breath condensate pH in asymptomatic children with prior wheezing as a risk factor for asthma
(2011) Journal of Allergy and Clinical Immunology, 128 (1), pp. 50-55.
Exhaled breath condensate pH for the identification of asymptomatic children at risk for asthma

Marie von Jagwitz¹, Frank Pessler, MD, PhD¹,², Manas Akmatov, DrPH²,
Jialiang Li, PhD³, Ursula Range⁴, and Christian Vogelberg, MD, PhD¹.

¹Division of Pediatric Pulmonology and Allergology, University Children's Hospital, Dresden, Germany,
²Department of Infection Genetics, Helmholtz Center for Infection Research, Braunschweig, Germany,
³Department of Statistics and Applied Probability, National University of Singapore, and
⁴Department of Medical Computer Science and Biometry, University Hospital, Dresden.

Reprint requests:
Christian Vogelberg, MD, PhD,
Division of Pediatric Pulmonology and Allergology,
University Children's Hospital,
Fetscherstraße 74, 01307 Dresden, Germany.
Tel.: +49 (0)351 458-5699
Fax: +49 (0)351 458-4334.
E-mail: christian.vogelberg@uniklinikum-dresden.de

Sources of funding: none

Disclosure of potential conflict of interest:
The authors have declared that they have no conflict of interest

Total word count: 3497
Abstract

Background: Early noninvasive detection of increased risk of asthma by means of exhaled breath condensate pH has not been applied to preschool children.

Objective: To evaluate the ability of exhaled breath condensate pH to identify young asymptomatic children at risk for asthma.

Methods: pH was measured in deaerated exhaled breath condensate from 191 children (median age [interquartile range]: 4.4 years [2.2]). Children were divided into 5 groups: asymptomatic children with recurrent wheezy bronchitis with (group 1; n=34) or without (group 2; n=64) allergic sensitization, acute wheezy bronchitis (group 3; n=18), allergic rhinoconjunctivitis but no recurrent wheezy bronchitis (group 4; n=15), and healthy controls (group 5; n=60). The asthma predictive index was calculated in children with recurrent wheezy bronchitis. Statistical significance was evaluated with the appropriate nonparametric tests and the discriminatory accuracy with binary and multicategory receiver operating characteristic (ROC) analysis.

Results: Deaerated exhaled breath condensate pH was significantly lower in groups 1 and 3 than in groups 2, 4 and 5 (median [interquartile range]: 7.49 [0.94] and 7.44 [0.70] versus 7.93 [0.23], 8.02 [0.17] and 7.96 [0.25]; \(P < .001 \) and AUC \(\geq 0.80 \) in all comparisons). The differentiation between groups 1 and 2 improved further when exhaled breath condensate pH was combined with the asthma predictive index (AUC, 0.89). Multicategory ROC analysis identified exhaled breath condensate pH as the test with the best overall discriminatory ability.

Conclusion: A reduced deaerated exhaled breath condensate pH might help identify young asymptomatic children at high risk for asthma.

Clinical Implications: Our results suggest that a low pH in deaerated exhaled breath condensate may serve as an additional parameter for the detection of preschool children at high risk for asthma.
Capsule summary: The differentiation of children with transient recurrent wheeze from those who will progress to persistent asthma is a clinical challenge. A reduced deaerated exhaled breath condensate pH might help the clinician identify future asthmatics.

Key words: asthma, allergic sensitization, asthma predictive index, early childhood asthma, exhaled breath condensate pH, recurrent wheezy bronchitis.
<table>
<thead>
<tr>
<th>No.</th>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>API</td>
<td>Asthma Predictive Index</td>
</tr>
<tr>
<td>57</td>
<td>AR</td>
<td>Allergic rhinitis</td>
</tr>
<tr>
<td>58</td>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>59</td>
<td>dEBC pH</td>
<td>Deaerated exhaled breath condensate pH</td>
</tr>
<tr>
<td>60</td>
<td>EBC</td>
<td>Exhaled breath condensate</td>
</tr>
<tr>
<td>61</td>
<td>FA</td>
<td>Family Asthma</td>
</tr>
<tr>
<td>62</td>
<td>FAT</td>
<td>Family Atopy</td>
</tr>
<tr>
<td>63</td>
<td>FeNO</td>
<td>Fractional exhaled nitric oxide</td>
</tr>
<tr>
<td>64</td>
<td>HUM</td>
<td>Hypervolume under the manifold</td>
</tr>
<tr>
<td>65</td>
<td>ICS</td>
<td>Inhaled corticosteroid</td>
</tr>
<tr>
<td>66</td>
<td>RAST</td>
<td>Radioallergosorbent test</td>
</tr>
<tr>
<td>67</td>
<td>ROC</td>
<td>Receiver operating characteristic</td>
</tr>
<tr>
<td>68</td>
<td>RWB</td>
<td>Recurrent wheezy bronchitis</td>
</tr>
</tbody>
</table>
Introduction

Asthma is the leading chronic disease among children in most industrialized countries. Approximately 80% of children with asthma develop symptoms prior to the fifth birthday. Wheezing preschool children at high risk for asthma may benefit from regular inhaled corticosteroid (ICS) therapy more than those at low risk. Therefore, it is of utmost importance to classify wheezing preschool children according to their presumed risk for the progression to chronic childhood asthma. Various studies that focused on this classification, namely the Tucson Children's Respiratory Study, the National Asthma Campaign Manchester Asthma and Allergy Study (NACMAAS), and the Multicenter Allergy Study (MAS), identified atopic sensitization in early life and a family history of atopy or asthma as major risk factors for the subsequent development of asthma. Infants with an atopic family history develop recurrent wheezing independently of respiratory syncytial virus prophylaxis according to the latest findings of the Palivizumab Long-Term Respiratory Outcomes Study. On the other hand, the Childhood Origins of ASThma (COAST) cohort study and the Childhood Asthma Study (CAS) suggested that the interaction between viral infections and atopy in infancy promotes asthma later on. Wheezing in response to viral triggers, but also to allergen exposure, tobacco smoke, mist, crying, laughter or exercise has been classified as multiple-trigger wheezing. According to the latest report of the American Academy of Allergy, Asthma, and Immunology and the European Academy of Allergy and Clinical Immunology, persistence of wheezing during the preceding year may be the key differentiator of the asthma phenotype in preschool children. Appropriately, the asthma predictive index (API), based on the Tucson Children's Respiratory Study, includes the following criteria: wheezing persistence apart from colds, wheezing frequency, atopic eczema or rhinitis, blood eosinophilia, and parental asthma. Sub-clinical airway inflammation in the clinically asymptomatic state is typical of multiple-trigger wheezing, and objective measures such as lung function or bronchoscopy may help to diagnose it. However, pulmonary function testing cannot be performed in all preschool children under routine
conditions due to the need for cooperation with forced expiration maneuvers. Bronchoscopy is too invasive to be used widely in young children. Likewise, induced sputum analysis is not appropriate as a noninvasive measure of airway inflammation in preschool children. Therefore, the differentiation of children with transient nonallergic wheeze from those who will progress to persistent asthma remains a clinical dilemma.

The analysis of exhaled biomarkers is a promising new technique for the noninvasive assessment of airway inflammation, particularly since it has been proven to be suitable in infants and preschool children even without sedation. In 2005, a task force of the American Thoracic Society and the European Respiratory Society published recommendations on the collection and measurement of exhaled biomarkers. Apart from FeNO, the pH of deaerated exhaled breath condensate (dEBC pH) was proposed as the most valid and reliable exhaled biomarker, giving reproducible results even in samples collected with different methods, such as EcoScreen and Rtube. Mean and median dEBC pH in healthy adults are 7.83 and 8.0, respectively, and similar values have been measured in children.

Importantly, dEBC pH is not affected by age, sex, time of day collected, volume of EBC collected, hyper- or hypoventilation of the subject, acute use of albuterol by the patient, oral ammonia, or methacholine-induced airway obstruction, temperature and duration of sample storage, or choice of CO$_2$-free gas used for deaeration (oxygen vs. argon). A reduced dEBC pH (<7.4) has been found to reflect acidification of the epithelial lining fluid and has been reported in acute lung injury, mechanically ventilated patients, COPD, bronchiectasis, chronic cough, cystic fibrosis, and acute and asymptomatic asthma. Furthermore, it is related to eosinophilic and neutrophilic airway inflammation and to treatment modalities (reviewed in).

Consistent with the notion that a reduced dEBC pH reflects some forms of airway pathology, we have previously shown that it is reduced in recurrently wheezing preschool children, even in the clinically asymptomatic state. However, the study design did not allow to identify subgroups with different risk levels for the development of asthma by means of dEBC pH alone. We therefore hypothesized that
additional risk stratification would be necessary in order to reveal any value of dEBC pH in the prediction of chronic asthma. Hence, the aims of the present study were (1) to evaluate the ability of dEBC pH to differentiate among subgroups of recurrently wheezing children with different risk levels for the development of asthma and (2) to test whether combining dEBC pH with data from the patients’ history and medication usage might improve this discriminatory ability.
Methods

Study population
The study was approved by the Ethics Committee of the University Medical Center of the Technical University Dresden, Germany. Written informed consent was obtained from all parents, and assent from the children. 190 preschool children were recruited from the University Children's Hospital Dresden between November 2007 and November 2008. Twenty-six healthy children from a neighboring nursery school were enrolled in addition. Exclusion criteria were (1) a diagnosis of gastroesophageal reflux disease, (2) a specific respiratory disease such as cystic fibrosis, primary ciliary dyskinesia, interstitial lung disease, pneumonia, tuberculosis and (3) recurrent fever of unknown origin, systemic prednisolone therapy during acute wheezy bronchitis, or inability to assess the atopy status.

Procedures
The study participants were separated into 5 groups on the basis of history and clinical and laboratory findings (Table I): asymptomatic children with recurrent wheezy bronchitis (RWB) with (group 1) or without (group 2) allergic sensitization; acute wheezy bronchitis defined as cough, normal or slightly elevated body temperature (<38°C), and wheezy lung sounds on auscultation, lasting <3 weeks (group 3); allergic rhinitis diagnosed according to ARIA criteria\(^{26}\) (AR) without a history of RWB (group 4); healthy controls excluding children with parentally or clinically reported wheeze or asthma, symptoms of airway inflammation in the last eight weeks, allergy, AR or atopic eczema (group 5). Therapy with ICS was documented, and the inhaled beclomethasone equivalent (in µg) was calculated. A detailed history of family atopic disease or asthma was documented and used to generate scores expressing the presumed genetic risks for the incidence of atopic disease (FAT) in 7-year-old children according to Kjellmann\(^{27}\) and according to an asthma score (FA) developed by the authors (Table II). The API was calculated according to Castro-Rodriguez et al.\(^{12}\)

EBC was collected without sedation according to American Thoracic Society/European Respiratory Society recommendations using a modified commercially available breath condensate sampler.
von Jagwitz 9

(EcoScreen, JAEGER, Höchberg, Germany). The design of these collection devices prevents salivary contamination of the breath condensate (see review19). Children had not ingested solids or liquids for at least 1 hour, rinsed the mouth with water before EBC collection, and did not wear nose clips during the procedure. Seated on the legs of their parents and distracted by an animated film, children were asked to breathe through the EcoScreen's mouthpiece for 5 min and to temporarily discontinue collection if they needed to swallow saliva. The exhaled air was cooled to -20°C inside of the condensing chamber where the condensate was then collected in an autoclaved polypropylene container. The samples were then thawed, transferred to sterile tubes (Eppendorf, Hamburg, Germany) and stored at -30°C until further analysis. pH was measured after a median storage time (interquartile range) of 2.5 (15) days. pH was always measured using the same equipment (PHM240 Meter Lab, Radiometer Analytical, Lyon, France) with a pH sensitive electrode (Orion 9103APWP AquaPro pH-Electrode, Thermo Scientific, USA). The pH meter was calibrated to pH 1.68, 4.01, 7.00 and 10.01 prior to each series of assays. A stable dEBC pH was achieved after deaeration with argon (350 ml/min) for 10-12 min. Atopic sensitization was defined as a radioallergosorbent test (RAST) class >2 and/or a positive skin prick test (SPT) for at least one common airborne allergen. SPT (Allergopharma, Reinbek, Germany) were performed against penicillium, cladosporium, aspergillus, mucor, alternaria, mugwort, ribwort, grasses, alder, hazelnut, birch, rye, Dermatophagoides pteronyssinus and farinae; sensitization was defined as a wheal at least 3 mm greater in diameter than the negative control. Plasma total and specific IgE concentrations to common airborne and food allergens (cow milk protein, egg protein, Dermatophagoides pteronyssinus and farinae, grass, rye, birch, alternaria, cat, dog) were assessed by RAST, and total IgE and eosinophil cationic protein (ECP) with fluorescence immuno assay (all with UniCAP 205, Phadia, Freiburg, Germany). The time interval between RAST and EBC collection was kept at a median (interquartile range) of two (eight) months. Peripheral blood eosinophils were quantified in a venous blood sample with an automated blood cell counter (XE 2100; Sysmex, Norderstedt, Germany) and expressed as the
percentage of the total leukocyte count. Blood samples were not obtained from healthy children for ethical reasons.

FEV₁ and MEF₂₅ were measured in children ≥ 5 yrs of age with body plethysmography (MasterLab, JAEGER, Höchberg, Germany). Parameters were expressed as % of predicted value. FeNO was measured in participants ≥5 yrs of age using a chemiluminescence analyzer (CLD 88 sp, Eco Medics, Duernten, Switzerland) according to the American Thoracic Society/European Respiratory Society criteria and expressed as parts per billion (ppb).

Statistical analysis

The data were not normally distributed and were thus expressed as median and interquartile range. Differences among the groups were tested with the Kruskal-Wallis test, followed, if appropriate, by the Mann-Whitney U-test for between-group comparisons. The Chi-square test was used to evaluate the distribution of categorical variables (number of occurrences) in the five groups. Spearman's rank correlation coefficients were used to assess the degree of association between metric data and dEBC pH. Significance was defined as P < .05. The abilities of dEBC pH, FAT, FA, ICS and the API and of their combinations to discriminate between any two subgroups were quantified with binary receiver operating characteristic (ROC) curve and logistic regression analysis, using SPSS for Windows (SPSS Inc., Version 11.5; Illinois, USA). Multicategory ROC analysis is a recently developed method to measure the performance of a test in the simultaneous discrimination among several diagnoses. Using code written in the R software environment for biostatistical computing (http://www.r-project.org/), we used it to rank dEBC pH, FAT, FA and ICS according to their overall abilities to differentiate among the five sample groups.
Results

Of 216 children screened, seven could not produce sufficient EBC volume for pH analysis, and 18 failed the inclusion criteria. Demographic, clinical, and atopic characteristics and dEBC pH results of the remaining 191 study subjects with a median age (interquartile range) of 4.4 years (2.2) are shown in Table I and Fig 1. Children from group 1 were older than groups 2 and 5 ($P < .001$ and $P = .035$), whereas group 2 was younger than group 4 ($P < .001$). The median EBC volume (interquartile range) of all children was 0.41 ml (0.22) and correlated positively with the age of the subjects ($r = 0.38$, $P < .001$).

There was no significant correlation between dEBC pH and sex ($P = .12$), age ($P = .11$) or sample volume ($P = .096$). Pulmonary function tests were performed successfully in 45% and FeNO measurement in 38% of the study participants. Deaerated EBC pH did not correlate significantly with FEV$_1$ ($r = 0.11$, $P = .41$), MEF$_{25}$ ($r = 0.20$, $P = .010$) or inhaled beclomethasone equivalent ($r = 0.029$, $P = .74$). There was a marginally significant negative correlation with FENO ($r = -0.27$, $P = .062$).

Between group differences in dEBC pH. There were no significant differences in dEBC pH between groups 1 and 3 ($P = .34$), groups 2 and 4 ($P = .13$), 2 and 5 ($P = .056$), or 4 and 5 ($P = .73$) (Fig. 1). Notably, dEBC pH was significantly lower in groups 1 and 3 than in groups 2, 4 or 5 ($P < .001$ for each of the 6 comparisons). These findings confirmed previous reports that dEBC pH is reduced in acute wheezy bronchitis25 (compare groups 3 and 5). Moreover, oral dEBC pH was normal in these children with AR without a history of wheezing (compare groups 4 and 5), demonstrating that atopic disease alone did not lead to reduced dEBC pH. Most importantly, these data suggested that a reduced pH might be useful in the diagnostic differentiation between atopic and non-atopic recurrent asymptomatic wheezers (compare groups 1 and 2). The potential discriminatory ability of dEBC pH was therefore quantified with ROC analysis. Multicategory ROC analysis identified dEBC pH as, by far, the best test in the simultaneous differentiation among all 5 groups, followed by FAT, ICS and FA (Table III; the API could not be included in this analysis since it had been determined in groups 1 and 2 only). In binary ROC analysis, dEBC pH differentiated accurately between group 1 and groups 4 or 5 (AUC, 0.86 and 0.85,
respectively). Remarkably, it also discriminated well between groups 1 and 2 (AUC, 0.80; sensitivity = 0.76, specificity = 0.77, positive predictive value = 0.63, all at the trade-off value of pH 7.79). In contrast, the AUCs for the differentiation between groups 1 and 3 and between group 2 and groups 4 or 5 were nondiscriminatory. In a logistic regression model, combining dEBC pH with the API improved the ability to differentiate between groups 1 and 2 further (AUC, 0.89), with a sensitivity and specificity of 0.79 and 0.86, respectively, and a PPV of 0.75 at the trade-off value of pH 7.83. The subsequent addition of FAT, FA and ICS resulted only in marginal further improvement (AUC, 0.90).
Discussion

Diagnostic value of dEBC pH. We evaluated the ability of dEBC pH to identify asymptomatic children with a history of wheezing who are at increased risk of developing chronic asthma. To our best knowledge, our findings constitute the first report that dEBC pH is significantly reduced in asymptomatic atopic children with a history of recurrent wheezing and thus may potentially serve as a noninvasive, cost-effective prognostic test that can be performed during an asymptomatic interval. The discriminatory power of dEBC pH was quantified with ROC analysis, an objective measure for the evaluation of clinical tests. The AUC of 0.80 for the discrimination between atopic and non-atopic recurrent wheezers corresponds to “excellent discrimination” in a commonly accepted ROC nomenclature. Notably, the addition of a simple, well validated risk score, the API, improved the discriminatory ability of dEBC pH further, the resulting AUC of 0.89 falling within the range of the AUCs of many tests used in clinical practice. dEBC pH differentiated not only between atopic and non-atopic preschool wheezers but also between those at high or low genetic risk for asthma and atopy according to family history (Table II). Moreover, it discriminated accurately between children with or without a positive API and correlated inversely with FENO, a well validated marker for allergic airway obstruction. Taken together, the present study extends previous results demonstrating that dEBC pH can classify recurrently wheezing preschool children into those at high risk (“atopic”) or low risk (“non-atopic”) for the development of asthma. Future studies should aim to identify additional biomarkers or elements of patient history that can improve the prognostic ability of dEBC pH and the API further. For instance, FeNO was significantly higher in group 1 than in group 2. However, values were only available for subsets of participants, and FeNO was therefore not investigated further in the present study. Future studies are needed to define its role as an adjunct parameter in combination with dEBC pH and API.

dEBC pH in allergic rhinitis. In the present study, dEBC pH was normal in children with AR without a history of RWB. In agreement with this finding, Profita et al. reported normal oral, but decreased nasal, dEBC pH in children. Together, these results support the view that dEBC pH is more
likely a marker of inflammatory processes in general and not of atopic processes within the airways per se, such as FeNO. In contrast, Brunetti et al. reported decreased oral dEBC pH levels in children with atopic dermatitis and allergic rhinitis without clinical signs of airway inflammation. They hypothesized therefore that dEBC pH might be an early predictor of the progression of the atopic march towards the development of asthma. However, a history of RWB was not excluded explicitly in that study, and it is therefore possible that the children were clinically asymptomatic at the time of EBC collection but, actually, may have wheezed in the past. Further studies are needed for a final assessment.

Possible mechanisms of reduced dEBC pH. The decreased dEBC pH values in asymptomatic atopic children with RWB at high risk for asthma (group 1) were found to be comparable to dEBC pH of children with acute wheezy bronchitis (group 3) and published values from ten-year-old children with active moderate asthma. dEBC pH may reflect endogenous airway acidification resulting from altered pH homeostasis in infectious and inflammatory disease processes, which may sometimes be allowed for host defense purposes, e.g. in response to rhinovirus infection. Mechanisms capable of acidifying the airways are then activated, such as the Na+-H+-exchange protein 1, the reduced nicotinamide adenine dinucleotide phosphate-dependent airway epithelial (lumenally acidifying) proton pump, and the release of vacuolar ATPase acidified granules. Simultaneously, mechanisms capable of neutralizing the airway, such as the provision of airway lining fluid proteins, including albumin, activate bicarbonate secretion into the lumen, and the glutaminase-induced production of ammonia and bicarbonate appears to be turned off. On the other hand, dEBC pH may also reflect exogenous airway acidification, which occurs during recurrent or accidental inhalation of fog or gaseous pollutants or during microaspiration of gastric acids. Airway acidification impairs ciliary motility and causes destruction of bronchial epithelium. It evokes cough, bronchoconstriction, airway hyperreactivity, microvascular leakage, and heightened production of mucus, fluid, and nitric oxide. In children who wheeze in the absence of common colds but in response to multiple triggers, it is plausible to hypothesize a constant sub-clinical eosinophilic and neutrophilic
inflammation of the airways2, 11. Bronchoscopic findings and the measurement of FeNO have confirmed this hypothesis in preschool children14, 17.

Influence of other variables on dEBC pH. Most studies show that dEBC pH tends to normalize after anti-inflammatory treatment, even in children35, 37. Unexpectedly, the dEBC pH did not correlate with the inhaled beclomethasone equivalent in our study, and ICS-treated children did not have higher dEBC pH values than ICS-naive children. However, we acknowledge that the design of the present study did not allow to control for important aspects such as compliance with inhalation therapy, therapy effectiveness, or judgment of the suitable dose38, 39. Although the overall correlation between the dEBC pH and FeNO was not significant, group 1 had significantly higher FeNO values than group 2, in concordance with lowered dEBC pH results. This is consistent with the insight that, at low pH, nitrite is protonated and forms nitric oxide40. This finding also lends further support to the notion that low dEBC pH values are pathogenetically relevant. Similarly, children from group 3 with acidic dEBC pH had significantly lower MEF\textsubscript{25} values than children from group 2 with less acidic dEBC pH ($P = .001$), suggesting a simultaneous occurrence of airway acidification and asthmatic obstruction of the small airways during acute wheezy bronchitis. This seems obvious with regard to the underlying pathophysiological processes during airway inflammation, including acidification36.

Potential limitations. There are certain limitations to this study. Firstly, microaspiration of gastric contents should be considered as a potential cause of airways acidification, particularly in infants and patients with obstructive lung disease35. Due to ethical reasons, gastroesophageal reflux was excluded by parental report of symptoms and not by diagnostic testing. Secondly, the children in group 1 were older than those in group 2, likely due to the fact that atopic children with RWB are more likely to be persistent or late-onset wheezers, who are usually older than transient wheezers2, 15. However, we do not believe that this age difference affected the measured dEBC pH values significantly since it is known that age does not influence dEBC pH appreciably22. Thirdly, treatment duration was not assessed in the children receiving corticosteroid inhalation therapy, which makes it difficult to judge its influence on dEBC pH.
Finally, in order to determine the reliability of the dEBC pH in predicting the development of chronic asthma, the results of the present study will have to be compared to the diagnostic gold standard, i.e. the formal diagnosis of asthma according to established criteria when the children have reached school age. For this purpose, we are planning to re-evaluate the study participants of groups 1 and 2 after the sixth birthday. At that time, we will also be able to evaluate whether combining the data for dEBC pH and API with those for CAP class (all from the present study) will improve the predictive value further.

In summary, the results of the present study suggest that dEBC pH, which has been proposed as a simple, noninvasive, and reproducible measure of airway inflammation, may serve as an additional marker for the early recognition of childhood asthma, particularly when combined with additional information such as the API.
Acknowledgments

We thank Antje Böhm and Katarina Marx for excellent technical assistance.

Table I. Demographic and laboratory characteristics of the subject groups*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Asymptomatic RWB</td>
<td>Acute</td>
<td>Nonatopic</td>
<td>Wheezy bronchitis</td>
<td>AR</td>
</tr>
<tr>
<td>Number</td>
<td>34</td>
<td>64</td>
<td>18</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>68</td>
<td>62</td>
<td>56</td>
<td>53</td>
<td>52</td>
</tr>
<tr>
<td>Age (m)</td>
<td>64.5 (15)</td>
<td>41.5 (27)</td>
<td>50 (21.5)</td>
<td>68 (19.5)</td>
<td>52.5 (26)</td>
</tr>
<tr>
<td>EBC volume (ml)</td>
<td>0.51 (0.37)</td>
<td>0.38 (0.23)</td>
<td>0.40 (0.24)</td>
<td>0.51 (0.22)</td>
<td>0.39 (0.15)</td>
</tr>
<tr>
<td>History of AR (%)</td>
<td>68</td>
<td>0</td>
<td>33</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>History of atopic eczema (%)</td>
<td>56</td>
<td>0</td>
<td>22</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>Family history of asthma (FA ≥ 3)‡</td>
<td>38</td>
<td>22</td>
<td>22</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>Eosinophils (%)</td>
<td>6.7 (6.0)</td>
<td>3.0 (3.0)</td>
<td>3.8 (4.0)</td>
<td>7.0 (5.5)</td>
<td>Not tested</td>
</tr>
<tr>
<td>Total IgE (kU/l)</td>
<td>289.0 (534.0)</td>
<td>25.0 (42.7)</td>
<td>116.0 (430.0)</td>
<td>282.0 (331.0)</td>
<td>Not tested</td>
</tr>
<tr>
<td>Serum ECP (µg/l)</td>
<td>50.5 (35.0)</td>
<td>30.0 (26.8)</td>
<td>33.4 (30.0)</td>
<td>58.0 (41.9)</td>
<td>Not tested</td>
</tr>
<tr>
<td>FEV1 (% predicted); n</td>
<td>105.3 (22.0); 22</td>
<td>101.6 (14.3); 23</td>
<td>98.3 (18.1); 6</td>
<td>112.6 (24.3); 8</td>
<td>Not tested</td>
</tr>
<tr>
<td>MEF25 (% predicted); n</td>
<td>92.3 (42); 22</td>
<td>89.3 (15.6); 23</td>
<td>58.1 (16.8); 6</td>
<td>110.3 (33.4); 8</td>
<td>Not tested</td>
</tr>
<tr>
<td>FeNO (ppb); n</td>
<td>13.4 (15.6); 21</td>
<td>5.4 (4.0); 18</td>
<td>7.7 (9.8); 4</td>
<td>12.4 (11.3); 7</td>
<td>Not tested</td>
</tr>
<tr>
<td>dEBC pH</td>
<td>7.49 (0.94)</td>
<td>7.93 (0.23)</td>
<td>7.44 (0.70)</td>
<td>8.02 (0.17)</td>
<td>7.96 (0.25)</td>
</tr>
</tbody>
</table>

*Results are expressed as median (interquartile range). †Kruskall-Wallis analysis. ‡Chi-square test.

‡according to TABLE II.
Table II. Genetic risk scores.

<table>
<thead>
<tr>
<th>FAT(^1)</th>
<th>%</th>
<th>FA(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No family member with any kind of atopic disease</td>
<td>10</td>
<td>No family member with asthma 0</td>
</tr>
<tr>
<td>One parent with any kind of atopic disease</td>
<td>20</td>
<td>One grandparent or one uncle or aunt with asthma 1</td>
</tr>
<tr>
<td>One brother or sister with any kind of atopic disease</td>
<td>35</td>
<td>Two grandparents with asthma (maternal and paternal) 2</td>
</tr>
<tr>
<td>One brother or sister and one parent with any kind of atopic disease</td>
<td>35</td>
<td>One parent with asthma 3</td>
</tr>
<tr>
<td>Two parents with any kind of atopic disease</td>
<td>42</td>
<td>Two parents with asthma 4</td>
</tr>
<tr>
<td>Two parents with identical manifestation of atopic disease</td>
<td>75</td>
<td>One or two siblings with asthma 5</td>
</tr>
</tbody>
</table>

\(^1\)Percent prevalence of atopic disease in seven-year-old children according to Kjellmann\(^{27}\). FAT, family atopy.

\(^2\)Risk score generated by the authors. FA, family asthma.
Table III. Overall ability of dEBC pH, FAT, ICS and FA to differentiate among the five subgroups

<table>
<thead>
<tr>
<th>Rank</th>
<th>Test</th>
<th>HUM¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>dEBC pH</td>
<td>0.0719</td>
</tr>
<tr>
<td>2</td>
<td>FAT</td>
<td>0.0011</td>
</tr>
<tr>
<td>3</td>
<td>ICS</td>
<td>0.0006</td>
</tr>
<tr>
<td>4</td>
<td>FA</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

¹Values represent hypervolumes under the manifold obtained with multicategory ROC analysis according to ref. ²⁹
Figure legends

Fig 1. dEBC pH in the four patient groups and healthy controls. dEBC pH was significantly lower in atopic recurrent (group 1) and acute wheezy bronchitis (group 3) compared with non-atopic recurrent wheezy bronchitis (group 2), allergic rhinitis (group 4), and healthy controls (group 5). \(P < 0.001 \) for each of the six comparisons.