This is a pre- or post-print of an article published in
Negri, M., Recanatini, M., Hartmann, R.W.
Computational investigation of the binding mode of
bis(hydroxylphenyl) arenes in 17β-HSD1: Molecular
dynamics simulations, MM-PBSA free energy calculations,
and molecular electrostatic potential maps
(9), pp. 795-811.
Computational investigation of the binding mode of bis(hydroxylphenyl)arenes in 17β-HSD1: molecular dynamics simulations, MM-PBSA free energy calculations, and molecular electrostatic potential maps

Matthias Negri,†, Maurizio Recanatini,‡ and Rolf W. Hartmann †*

† Pharmaceutical and Medicinal Chemistry, Saarland University & Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C2.3, D-66123 Saarbrücken, Germany.
‡ Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro, 6, I-40126 Bologna, Italy

* To whom correspondence should be addressed: Prof. Dr. Rolf W. Hartmann.
Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-
66123 Saarbrücken, Germany; Phone: +49-681-30270300. Fax: +49-681-30270308.
E-mail: rwh@mx.uni-saarland.de. Homepage: http://www.PharmMedChem.de

Abstract.

17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) catalyzes the last step of the estrogen biosynthesis, namely the reduction of estrone to the biologically potent estradiol. As such it is a potentially attractive drug target for the treatment of estrogen-dependent diseases like breast cancer and endometriosis. 17β-HSD1 belongs to the bisubstrate enzymes and exists as an ensemble of conformations. These principally differ in the region of the βFaG'-loop, suggesting a prominent role in substrate and inhibitor binding. Although several classes of potent non-steroidal 17β-HSD1 inhibitors currently exist, their binding mode is still unclear.
We aimed to elucidate the binding mode of bis(hydroxyphenyl)arenes, a highly potent class of 17β-HSD1 inhibitors, and to rank these compounds correctly with respect to their inhibitory potency, two essential aspects in drug design. Ensemble docking experiments resulted in a steroidal binding mode for the closed enzyme conformations and in an alternative mode for the opened and occluded conformers with the inhibitors placed below the NADPH interacting with it synergically via π-π stacking and H-bond formation. Both binding modes were investigated by MD simulations and MM-PBSA binding free energy estimations using as representative member for this class compound 1 (50 nM). Notably, only the alternative binding mode proved stable and was energetically more favorable, while when simulated in the steroidal binding mode compound 1 was displaced from the active site. In parallel, ab initio studies of small NADPH-inhibitor complexes were performed, which supported the importance of the synergistic interaction between inhibitors and cofactor.
Introduction

Estrogens, in particular the biologically active 17β-estradiol (E2), display a wide variety of physiological functions via endocrine as well as intracrine, autocrine or paracrine mechanisms. They are essential for the regulation of the female reproductive system and exert a protective function on the cardiovascular system, against osteoporosis and various forms of neurodegenerative diseases [1-3].

On the other hand, estrogens are also known to function as mitogenic factors: the interaction of E2 with the estrogen receptors (ERs) α and β induces an increased expression of transcriptional genes, crucial for the growth and the development of hormone-dependent diseases like breast cancer (BC) [4] and endometriosis [5]. A continuous supply of excess estrogen is essential to facilitate cancer tissue proliferation. However, major parts of the estrogen levels in the plasma are represented by the weakly active estrone (E1) and its sulfate and they are not sufficient to support this progression, suggesting local (intracrine) production of estrogens to be the key step in the pathological progress [6].

While the ovaries are the main source of systemic estrogen in premenopausal woman, other sites of estrogen biosynthesis (i.e. breast, adipose, bone and brain) spread throughout the body become the major sources of estrogen beyond menopause. These peripheral sites have the capacity to convert C19 steroids (androgens) to C18 steroids (estrogens), but unlike the ovaries they lack the ability to synthesize the former. Hence, this estrogen production is totally dependent on the availability of circulating C19 precursors. Thus, even though the total amount of estrogen synthesized in these peripheral sites may be small, the local tissue concentrations achieved are probably quite high. They will exert significant biologic effect acting at a local tissue level in a paracrine or intracrine fashion [6-9].

In fact, in tumor tissue androstenedione (C19 precursors) and estrone sulfate are transformed by peripheral aromatase and steroid sulfates into E1. Subsequently, the weakly active E1 is reduced to its highly active form E2. This last step of the E2-biosynthesis (Fig 1) is catalyzed by 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1 or SDR28C1, according to the new nomenclature [10]; E.C. 1.1.1.62), mostly in the peripheral compartments. 17β-HSD1 belongs to the short-chain
dehydrogenase/reductase (SDR)-family and requires NADPH as cofactor for in vivo function [8-9, 11-12].

Overexpression of 17β-HSD1 in tumor cells (i.e. in breast cancer with respect to normal breast tissue) [13-15] as well as in endometriotic lesions [16] and in situ production of E2, i.e. an increased E2/E1 ratio, point out the pivotal role of 17β-HSD1 in these estrogen-dependent diseases [14, 17-21]. Thus, the selective inhibition of 17β-HSD1 can be regarded as a promising therapeutic approach in estrogen-dependent diseases [18] as has been the selective inhibition of 5α-reductase in androgen-dependent diseases [22]. This therapy should present less side effects compared to the current endocrine treatments (selective estrogen receptor modulators – SERMs, aromatase inhibitors, GnRH agonists or antagonists, pure antiestrogens) [23-25] in virtue of a selective reduction of the local concentration of E2 in the diseased tissues [26], without influencing the systemic estrogen concentration.

Recently, Husen et al. [11], Lamminen et al. [12] and Day et al. [27] provided a proof of concept for the treatment of breast cancer through the inhibition of 17β-HSD1 by applying steroidal inhibitors intraperitoneally and subcutaneously in different mouse-models. In each study a reduction of tumor tissue proliferation was observed.

Several 17β-HSD1 inhibitors have been reported so far, most of them bearing a steroidal scaffold with substituents at positions 2, 6, 15, and 17 [28-30]. Additionally, five non-steroidal classes exist as well: thienopyrimidinones [31-32], biphenyl ethanones [33], and from our group, (hydroxyphenyl)naphthalenes [34-36], (hydroxyphenyl)arenes [37-38], and bis(hydroxyphenyl)arenes [39-42].

Recently, we simulated the bi-bi kinetic cycle of 17β-HSD1 and performed a structural analysis of the 17β-HSD1 crystal structures [43], which are present in the PDB database [44] as apoform, as binary complex with cofactor or with E2/androgens/inhibitors, and as ternary complex with cofactor and E2/inhibitors. This study revealed an overall identical tertiary folding for the enzyme with a rigid cofactor binding site (COF) and a tunnel-like, hydrophobic substrate binding site (SUB). The SUB hosts E2, which is stabilized at the polar ends of the SUB by hydrogen bonds between O3 and His221/Glu282, as well as between O17 and Tyr155/Ser142. Notably, Ser142 and Tyr155 are also part of the catalytic tetrad (together with Asn114 and Lys159), essential for the enzyme functionality [43]. The only but marked
difference in the crystal structures was identified for the highly flexible βFαG’-loop (residues 188 to 199), not fully resolved in eleven crystal structures. This loop is situated at the intersection of COF and SUB and can exist in different orientations strongly influencing volume and shape of SUB and COF. Superimposition and successive clustering of the crystals according to the topology of the loop residues Phe192-Met193-Glu194-Lys195-Val196 resulted in three and five clusters, depending on whether the backbone RMSD (root mean square distance) or the all-atom RMSD are considered. The first three clusters correspond to the opened, occluded, and closed states of the enzyme, highlighting the presence of two possible entrance/egress paths for cofactor and ligands (Fig 2 and ESM1). The last five clusters, on the other hand, discriminate between separated and fused, large and tiny cofactor and substrate binding sites and resemble the main kinetic cycle steps of 17β-HSD1 as resulted by multiple molecular dynamics (MD) simulations. The outcome of that study suggested 17β-HSD1 to follow a five-step rapid equilibrium random bi-bi sequential kinetics, in accordance to existing biochemical data. Further, it highlighted the prominent role of the βFαG’-loop in ligand stabilization as well as in entrance/expulsion of cofactor and E1/E2. In particular, Phe192 seems to have two functions: 1) when it points perpendicularly toward Tyr155 it acts as a catalysis promoter by modulating the pKₐ of this catalytically crucial residue, thus facilitating the proton transfer to the O17 of E1; 2) it might function as a swinging door, responsible for the opening and the closure of the entrance/egress gates, as suggested by its marked rotation around the βFαG’-loop axis [43].

Bis(hydroxyphenyl)arenes are highly potent 17β-HSD1 inhibitors based on a (m-hydroxyphenyl)-X-(p-hydroxyphenyl) core, where X stands for different (hetero)aromatic rings (Fig 3) [40-41]. This class of inhibitors presents a very sharp structure-activity relationship (SAR), where the best substitution pattern is m-OH/p-OH and the inhibitory potency varies strongly exchanging X. In two recent publications we reported about the two strategies that we followed in the drug design of this class [40-41]. The first, structure-based, was an ensemble docking approach with the enzyme conformers diverging significantly only in the region of the highly flexible βFαG’-loop [41]. Two strictly conformation-dependent binding modes emerged: a steroid-mimicking one for the enzyme in its closed state (PDB IDs 1fdtB and 1a27) and an alternative one for opened and occluded enzyme structures (PDB IDs 1fdtA and 1i5r). In the latter binding mode, the inhibitors are docked below the
cofactor, stabilized by a strong hydrogen bond between the m-OH group and the phosphate group close to the nicotinamide ring, as well as by \(\pi-\pi \) stacking with the nicotinamide moiety of NADPH. The inhibitor is flanked on one side by Tyr155 and Ser142 and on the other by the \(\beta F\alpha G' \)-loop and the \(\alpha G \)-helix. However, no scoring function managed to rank the docked inhibitors (i.e. 1-5; Fig 3) correctly according to their IC\(_{50}\) values. The second approach was ligand-based and built on the different molecular electrostatic potential (MEP) distributions between active and inactive members of this class [40]. A semi-quantitative MEP-activity relationship ("semi-QMAR") was derived: electron-rich (negative MEP) \(m \)-hydroxyphenyl- (region I) and heteroring \(X \) (region II), as well as a hydrophobic, neutral \(p \)-hydroxyphenyl ring (region III), correlate with strong inhibition, whereas switching the MEP distribution (neutral region I and negative region III) results in a drastic loss of activity. In the light of both the alternative binding mode and the characteristic MEP distribution for the ligands we also calculated the MEP distribution for NADPH: the complementarity between the potential surfaces of regions I-II and the nicotinamide moiety supported the preference for this binding mode [41].

\section*{Design of the study.}

In this work we aimed to elucidate the most plausible binding mode for the class of the bis(hydroxyphenyl)arenes, to clarify the role of the flexible \(\beta F\alpha G' \)-loop in inhibitor binding, and to find a measure to correctly rank the members of this class of inhibitors with respect to their inhibitory potency. Thereby we grounded our work on the results of the above reported studies, namely on a set of representative enzyme conformers [43] and on the binding modes identified therein [41]. In particular, we focused on the binding mode of compound 1 (Fig 3), representative for this class of inhibitors.

Again two approaches were followed: in a structure-based perspective, the two different binding modes observed for compound 1 (steroidal and alternative) and the influence of the \(\beta F\alpha G' \)-loop on compound 1 binding were studied by means of a multiple-trajectory/-complex MD simulation strategy. Four enzyme conformers, representative for the opened (PDB IDs 1fdtA and 1iol), occluded (PDB ID 1i5r) and closed (PDB ID 1fdtB) enzyme conformers, were used as starting structures with 1 placed either in the alternative (1fdtA, 1iol and 1i5r) or in the steroidal binding mode.
Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) methods [45-46] and normal mode (NMODE) analysis [47] were employed to approximate the free energies of the five complexes, in order to determine the energetically most favourable binding conformation of compound 1. The parallel, ligand-based approach consisted in building five ternary complexes based on the catalytic tetrad residues (Asn114, Ser142, Tyr155 and Lys159), NADPH and one of the inhibitors 1-5. We investigated these complexes at density functional theory (DFT) level and the energy differences between these five complexes and the NADPH-tetrad (binary) complex were computed and correlated with the IC₅₀ values of the inhibitors. The molecular electrostatic potentials of the ternary complex with 1 and of the binary complex were plotted on the respective electron-densities to compare and the resulting MEP maps were interpreted. Finally, we docked both active and inactive bis(hydroxyphenyl)arenes into enzyme conformers retained from the MD simulations aiming to rationalize the SAR for this class of inhibitors based on their binding mode.

The combined analysis of both strategies shed new light on the binding mode of this class of inhibitors, on the role of the βFαG'-loop, and indicated the alternative binding mode as the most likely one. Compounds 1-5 could finally be ranked correctly based on the relative free energy (ΔG) obtained at a DFT level. We could show the importance of an accurate sampling of the conformational space prior to the selection of the starting structure to be used for structure based-design. Finally, this class of inhibitors seems to follow a novel inhibitory mechanism, namely to inhibit the enzyme dynamics by targeting a specific enzyme conformation and by binding to the cofactor in a synergistic manner instead of competing with it for the cofactor binding site.

Results and Discussion

1. Assessing the binding mode of compound 1 with MD simulations

First, we wanted to investigate the binding mode of compound 1, representative for the bis(hydroxyphenyl)arenes, and to prove the importance of an accurate selection of the starting enzyme conformation. To this end, and in order to sample most of the conformational space of the flexible βFαG'-loop, five MD simulations lasting at least 10 ns of the ternary enzyme (E)-NADPH-compound 1 complex were performed,
where E indicates, respectively: 1) the opened state conformer of 17β-HSD1 (1fdtA - D1) - characterized by a fused cofactor (COF) and substrate binding site (SUB) and by Phe192 turned outwards; 2-3) two semi-opened (occluded) conformers (1iol - D2; 1i5r - D3) - with Phe192 more buried than in 1fdtA and with the loop rotated inwards and toward the COF; 4) the closed state (1fdtB - D4a and D4b) - mimics the ternary complex at the catalytic moment and presents a closed SUB and Phe192 pointing inwards perpendicular to the catalytic Tyr155.

We expected the most reliable binding mode of compound 1 to be maintained for as long as possible, regardless whether the alternative (D1-D3) or the steroidal one (D4a-4b) were considered, and eventually to see the five simulations converging into a common final structure. All MD simulations were evaluated in terms of: a) displacement of compound 1 with respect to the starting pose, b) complex-stability in terms of RMSD, c) time required to reach and to maintain a stable RMSD and energy plateau. For each constant segment of the trajectories, snapshots were collected and used to estimate the binding free energy (ΔG_{bind}) by means of MM-PBSA methods and NMODE analysis. This approach of binding free energy determination is less rigorous from a statistical mechanical perspective than thermodynamic integration (TI) or free energy perturbation (FEP), but it is computationally much less demanding and its accuracy has been shown in several recent publications, in particular when ligands with a similar structure were considered [48-49]. In this study ΔG_{bind} were estimated for the very same ligand, namely compound 1, enforcing us to consider the error in the approximation as negligible.

Another way to reduce the error percentage in (absolute) ΔG_{bind} determination is to calculate the relative binding energy ($\Delta \Delta G_{\text{bind}} E1-1$) between the substrate E1 and compound 1, for each simulated complex (enzyme conformer) respectively. The impact of the tricky conformational entropy will be reduced and more accurate binding free energy estimations become feasible (Table 1). The binding free energies of E1 (ΔG_E1) for the three enzyme-NADPH-E1 complexes with 1fdtA, 1i5r, and 1fdtB were retrieved from the literature [43].

In order to elucidate the dynamics of the active site residues, which modulate the active site topologies and thereby influence the binding of compound 1, distance collective variables (CV) were derived and plotted over the simulation time. The C_α of Met147, which is placed in the substrate binding site and which showed only minor
RMSD fluctuations in the MD simulations D1, D3, D4a and D4b (see Fig 5a and 8a), was selected as reference point for most of the CV measurements. In case of D2 we chose the Cα of Leu149 instead of Met147, because for the latter residues a Cα-RMSD of about 1.5 Å was observed. These CV are defined as the distance between the reference point and the center of mass of the phenyl rings of Phe192, His221, Phe226 and Phe259, as well as of the thiomethyl group of Met193 and the amine moiety of Lys195, respectively. All plots of the distance CV over the simulation time can be found in supporting information.

a. Alternative binding mode.

For three ternary complexes describing the alternative binding mode MD simulations of at least 10 ns length were performed: D1 - 1fdtA, D2 – 1iol, and D3 – 1i5r. The starting enzyme conformers of these simulations are characterized by the progressive inward rotation of Phe192, a known “conformational marker”, and by the presence or absence of a short helix in the loop [43]. In each of the three starting conformations compound 1 is close to the cofactor, while the flexible βFαG'-loop is present in divergent conformations.

All three MD simulations D1-D3 result in a RMSD plateau maintained for about 6 ns (Fig 5). Nevertheless, the time required to reach these plateaus varies in accordance with the different starting loop conformations. For D2, in which the starting complex structure already presents an ordered loop (α-helix: A191-Val196) placed centrally in between the αG-helix and Arg37, a stable all-atom RMSD of 3 Å was reached after 1 ns, while in D1 (disordered central placed loop) and in D3 (disordered and left shifted loop) it takes ca. 3 and ca. 6 ns, respectively (Fig 5b). Interestingly, for all three simulations the final position of the βFαG'-loop axis (Cα) is very similar, whereas the orientation of the side chains of the loop residues Phe192 and Met193 diverge significantly (Fig ESM2 – final stable structures of D1 and D3 superimposed).

In D1-D3 compound 1 remains strongly anchored below the cofactor via a hydrogen bond between its m-OH group and the phosphate close to the nicotinamide ring and by π-π stacking interactions with the nicotinamide moiety itself (Fig 6). However, in D1 two additional hydrogen bonds were formed: one between the m-OH group of 1 and the inwardly rotated Lys195 and the second between the p-OH group of 1 and His221 (Fig 7, ESM3, ESM4 and ESM6e).
In **D1** the hydrogen bonds between compound **1** and Lys195 and His221 are formed early in the simulation (Fig ESM4). This goes ahead with the consistent rearrangement of the loop, which seems to fold into an α-helix. The impact of this motion on the position of **1** is reflected by the RMSD of **1** of nearly 5 Å after few ns, which then sinks to 4 Å after 5 ns and is maintained until the end of the MD (Fig 5c).

The main responsible for this large fluctuation is the \(p\)-hydroxyphenyl-ring, which is initially pushed toward the active site wall where Met147 is placed (4 Å at 2 ns) and then close to the \(\alpha\)-G-helix (8 Å plateau after 3 ns; Fig ESM6f). His221 turns slightly inward, breaking the salt bridge formed with Glu282 (Fig ESM5a), and establishes in turn a hydrogen bond with the \(p\)-OH group of compound **1** (0% occupancy at 1 ns; 79% from 3-12 ns; Fig ESM4). As a direct consequence of these movements a concerted motion between the C-terminal helix and neighboring structural motifs can be observed. The C-terminal helix slides up for about 20 degrees and brings the carboxylic moiety of Glu282 within 3-4 Å of the guanidine moiety of Arg258 with which it forms a new ion-pair (Fig ESM5b and ESM6c). This Arg258-Glu282 salt bridge occludes the access to the substrate binding site at the C-terminal end (gate 3, Fig 2 and 6a). Remarkably, in the PDB ID 1equ Arg258 contributes to stabilize the steroidal inhibitor equilin. Phe226 moves inward (from 10 to 4 Å after 4 ns) and after 6 ns it stabilizes the central thiazole ring of **1** by π-π stacking (Fig ESM6d). Phe192 and Met193 are still placed out of the active site, with the former shifted toward the adenosine moiety of NADPH, thus hinting at a partial closure of the entrance cleft (gate 1, Fig 2 and 6a) of the cofactor.

In the stable conformation of **D2** the \(\beta\)Fα\(\alpha\)G’-loop is folded into a long α-helix (Ala191-Leu197). This helix already exists in the starting enzyme conformation and the initial orientation of the loop residues might reduce the conformational freedom of the loop itself. In the first, very stable 6 ns of **D2** Phe192 points toward the cofactor, closing gate 1, and it moves close to compound **1** interacting via π-π stacking with the \(m\) -hydroxyphenyl ring (Fig 6b). Met193 is buried into the active site playing an important role in the stabilization of the inhibitor (Fig ESM7b and d) and it induces the central ring X of the inhibitor to be perpendicular with respect to the nicotinamide moiety of NADPH and parallel to the catalytic Tyr155 (parallel π-π stacking). After 7 ns a right-shift of the loop axis toward the \(\alpha\)G-helix was observed, causing an inward rotation of the phenyl ring of Phe226 of nearly 3 Å (Fig ESM7c). This motion closes gate 2, placed between the \(\beta\)Fα\(\alpha\)G’-loop and \(\alpha\)G-helix (Fig 6b), but opens gate 1 and induces
a consequent drop of the cofactor. Thereby the hydrogen bond between the amide moiety of the nicotinamide ring of NADPH and the backbone of Val188, characteristic of cofactor stabilization in several HSD enzymes, is lost (72 % occupancy 0-6ns, 24 % 6-12 ns; Fig ESM4 and ESM8 - stable (6ns) and final pose of 1 in D2) [50]. Notably, the inward rotated Phe192 holds NADPH in the cofactor binding site and the hydrogen bond of the \(m \)-hydroxy group of compound 1 to the phosphate of the cofactor is maintained.

In the stable part of D3 compound 1 interacts via \(\pi-\pi \) stacking with Phe192, this time facing the active site, and with Phe226, which stabilizes the \(\rho \)-hydroxyphenyl ring (Fig 6c and ESM9). Additionally, 1 forms hydrophobic interactions with Leu96, Val143, Leu149, and Val225. In this case Met193 is oriented toward to adenosine moiety of NADPH shielding the cofactor binding site from the solute like Phe192 does in D2. The \(\rho \)-hydroxyphenyl ring (reg III) of 1 points into a pocket formed by Met147, Tyr275 and Met278. Already after few ns the \(\beta F_{\alpha G}'\)-loop is folded as \(\alpha \)-helix (Met193 to Leu197), apparently avoiding the concerted, disordered motions of C-terminal helix and \(\alpha G \)-helix residues observed for D1. The ion-pair Glu282-His221 is maintained (Fig ESM5c and ESM9d) and the C-terminal helix does diverge marginally with respect to the \(\alpha G \)-helix and from its starting structure (lower RMSD fluctuations of residues 275 to 285 of D3 with respect to D1 in Fig 5a).

In all three simulations, Glu194 is involved in ion-pairs with the \(\alpha G \)-helix residues Lys223 and/or Arg227 (Fig ESM5), stabilizing the central position of the loop and modulating gate 2. However, depending on how close loop and \(\alpha G \)-helix are, in D1 and D3 gate 2 is reduced to a tiny hydrophobic tunnel, delimited by Val196, Leu197, Gly198 (\(\beta F_{\alpha G}'\)-loop) and Gln217, Ala220 and Phe226 (\(\alpha G \)-helix), while in D2 it is totally closed. Remarkably, Lys195 is rotated toward the adenosine moiety of NADPH only in D1 and D3, forming a salt-bridge with the 2' phosphate of the cofactor, while for D2 it is solvent exposed and further afar from the phosphates, thus leaving gate 1 opened and exposing NADPH to the solvent.

Overall, the final scenario emerging from D1-D3 suggests an occluded active site similar to the one of crystal structures resembling the catalytic moment (e.g. PDB ID 1a27). In D1 and D3, but also in the first 6 ns of D2, the \(\beta F_{\alpha G}'\)-loop perches in between cofactor and substrate binding site, stabilized in its central position by interactions with the \(\alpha G \)-helix (ion pair Glu194-Lys223/Arg227) and the 2'-phosphate.
of the cofactor (Fig 6). It occludes both gate 1 and 2, avoiding the solvent to enter the
substrate binding site and preserving its hydrophobic nature. Further, in this position
the βFαG'-loop hampers the release of cofactor and inhibitor.

The ΔG values (Table 1a) for D1, D2 (first 6 ns), and D3 are -9.19, -9.48, and -4.12
kcal/mol respectively and appear to support our conclusions. The ΔG of the
complexes D1 and D2 are in line with the high potency of 1 (50 nM), probably
because of the presence of the helix in the βFαG'-loop, which can stabilize the
inhibitor-enzyme complex in a local minimum energy conformation. Interestingly, also
D3 presents a helix in the loop but its estimated ΔG is much lower. The reason
therefore is reflected by the higher entropic term obtained for D3, whereas its
enthalpy is comparable to that of D1 (Table 1a).

b. Steroidal binding mode.

The two MD simulations with compound 1 placed in the substrate binding side (SUB),
D4a (m-OH mimicking the C17 OH and the p-OH the C3 OH of estrone) and D4b (1
is horizontally flipped with respect to D4a), reach a longer all-atom RMSD plateau
only after 11 ns (Fig 8b). However, several shorter plateaus of approximately 1 ns
occur along the trajectories as well, indicative for possible intermediate metastable
states as also suggested by the exchange of hydrogen bond partners of compound 1
along the simulation time (see % occupancy in Fig ESM4).

In D4a the βFαG'-loop shows an all-atom RMSD of about 4 Å after already 1ns,
which sinks to 3 Å after 2-3 ns before rising again to 4 Å over the last 5 ns (Fig 8c).
The rapid RMSD increase at the beginning of the trajectory is caused by the shift of
the loop toward the αG-helix, protruding into the SUB with Phe192 and Met193, as
well as Phe226, turning more and more into the active site (Fig 9): Thereby, Phe192
moves from nearly 20 Å to 11 Å from the Cα of Met147, whereas Phe226 from 15 to 7
Å (Fig ESM10). The initial motion of the loop induces the displacement of the inhibitor
(heavy atom RMSD shift of more than 5 Å; Fig 8d) and thereby the loss of the
hydrogen bond between compound 1 and Ser142/Tyr155 as well as His221/Glu282
(0 % occupancy after 3 ns and 1 ns respectively; Fig ESM4 and ESM5d-e). The m-
hydroxyphenyl-ring of 1 is progressively oriented towards the bottom of the SUB,
where it forms a hydrogen bond with Asn152 (% occupancy rises from 0 to 80 %; Fig
ESM4), whereas the p-hydroxyphenyl-ring moves towards the top of the SUB and
gate 3, inducing Phe259 to rotate outwards, as shown in Fig 9 and ESM10.
In D4b a similar behavior of the βFαG'-loop as for D4a was observed with an RMSD of about 3.5-4 Å after 2 ns (Fig 8c). Again the loop moves into the SUB and pushes compound 1 progressively toward gate 3. Notably, in this simulation the m-hydroxyphenyl-ring of 1 remains anchored to His221 (average occupancy about 19%; Fig ESM4) following His221 out of the SUB (Fig ESM11). The ρ-hydroxyphenyl-ring, on contrary, loses its hydrogen bond to Ser142/Tyr155 after approximately 6.5 ns (Fig ESM4) and is then pulled to the top and out of the SUB (Fig 9). The jump in the all-atom RMSD of 1 shown in Fig 8d from 4 Å to a plateau of 8-10 Å summarizes this motion.

For both simulations D4a and D4b compound 1 is displaced from its starting pose ending either perpendicular to the estradiol plane close to gate 3 (D4a) or lying completely out of the SUB (D4b) (Fig 9). The large fluctuations in its RMSD are in agreement with the unfavorable ΔG values estimated for D4a (-2.41 kcal/mol) and especially D4b (+3.57 kcal/mol) (Table 1). Interestingly, in contrast to D1-D3, at the end of D4a and D4b cofactor and substrate binding site result clearly separated by the βFαG'-loop and Phe192 is buried in the SUB. In D4b the salt-bridge His221-Glu282 is broken (Fig ESM5) due to the motions of loop and compound 1 and both residues edge outward, enlarging gate 3 (Fig 9).

In order to minimize error contributions to the binding free energies given by the entropy factor we calculated the relative binding free energies for compound 1 with respect to E1 (ΔΔG_{bind E1-1}; table 1b). Thereby we subtracted the binding free energies for E1 (ΔG_{E1}), taken from reference [43], from the ΔG_{bind} estimated in this study for compound 1. Both the ΔG_{E1} and the ΔG_{bind} were obtained for the same starting enzyme conformers, i.e. 1fdaA, 1i5r and 1fdtB. The ΔΔG_{bind E1-1} resulting for D1 (-6.59 kcal/mol) and D3 (-3.16 kcal/mol) favour the alternative binding mode in particular comparing them to the ΔΔG_{bind E1-1} obtained for D4a (+5.83 kcal/mol) and D4b (+11.97 kcal/mol). Remarkably, the ΔΔG_{bind E1-1} for D1 and D3, as well as the difference between them, are in concord with the ΔG_{bind} obtained in this study for D1 (-9.19 kcal/mol), D2 (-9.48 kcal/mol) and D3 (-4.12 kcal/mol).

Recently, Mobley et al. showed that when an enzyme is kinetically trapped in a metastable state errors in a range of several kcal/mol might result for binding energy determination and that a solution might be the inclusion of the relative free energy of
reorganizing the protein in addition to the binding free energy of the ligand [51]. However, in our study consistent conformational rearrangements of the βFαG-loop were observed in all MD simulations (see the all-atom RMSD plots in Fig 5b and c and 8b and c), which lead us to exclude the enzyme to be kinetically trapped in a metastable state endorsing to neglect this additional contribution. Moreover, the fact that D1-D3 resulted in a common, energetically favorable conformation (focusing on the βFαG'-loop), regardless that different enzyme conformers were employed as starting point to test the same binding hypothesis, accounts for a selected-fit mechanism for this class of inhibitors. In conclusion, although the five MD simulations D1-D4b did not converge to one common binding mode, at least for D1-D3 a similar final pose for compound 1 was found. The βFαG'-loop axis is in the same position for all of the three and similar binding free energies were obtained for the simulated complexes in D1 and D2. Taken together, the common binding pose of compound 1 in D1-D3, its large motions and almost “out-of-substrate-binding-site” position in D4a-D4b, as well as the related ΔGbind values, indicate the alternative binding mode of 1 to be the more plausible one. Moreover, we suggest that 1 would ideally bind to NADPH, Phe192, Phe226 and the inward turned His221, with the C-terminal helix switched up occluding the substrate binding site. The ΔG values and the long, unstable trajectories of D4a-D4b, which are characterized by various RMSD plateaus and short-living hydrogen bonds with different residues, lead to the conclusion that the steroidal binding mode is less likely for this class of inhibitors and that it might eventually represent a transition step on the egress pathway. This last assumption is supported by the ΔG estimated for an extension of 2 ns of simulation D4a (-10.28 kcal/mol, with respect to -2.48 kcal/mol of the stable plateau; Table 1a), where compound 1 already points out of gate 3 and the SUB is reduced by half and occupied by Phe192, Met193, and Phe226. This gain in free energy could be indicative for an ideal egress way through gate 3.

2. Molecular Electrostatic Potential calculation and analysis.

Molecular electrostatic potential (MEP) typically reveals parts of the molecules more likely to interact, and considering that the interaction energy is usually dominated by the electrostatic part we expect the electrostatic potential to be a sensitive tool for prediction of the potency of inhibitors 1-5. Thus, a complementarity between the
nicotinamide ring of the cofactor and the m-hydroxyphenyl ring (region I) of these compounds has been hypothesized on the basis of the opposite molecular electrostatic potential (MEP) distributions for these areas, suggesting $\pi-\pi$ stacking between cofactor and inhibitor (Fig 10) [41].

In order to verify this assumption and the electrostatic nature of the binding, we created a set of five complexes T1-T5 formed by the catalytic residues (Asn114, Ser142, Tyr155 and Lys159), NADPH and compounds 1 to 5 (Fig 3), respectively, and one “receptor” complex R1 consisting of the catalytic residues and NADPH. All six complexes were ab-initio geometry optimized at the B3LYP/6-311+g** level of DFT [52-54]. Each of compound 1 to 5 was placed in the alternative binding mode, anchored with the m-OH group to the phosphate next to the nicotinamide moiety, and the (m-hydroxyphenyl)-X core parallel to it (Fig 11). The IC$_{50}$ values of compounds 1-5 span a range between 50 and 2500 nM and show a strong dependency on the nature of the heteroring X. The energy differences (ΔG) between each of the five ternary complexes and the binary complex were computed and plotted against the pIC$_{50}$ values (Fig 11).

This ab initio approach was not intended to predict the absolute free energy of binding in quantitative agreement with the experimental data, i.e. IC$_{50}$ values, but rather to determine relative binding free energies to be used to rank correctly the inhibition profile for the structurally very similar inhibitors 1-5. Remarkably, the calculated ΔG reproduce the trend of 1-5 in terms of inhibitory potency (Fig 11b), and could be used to correct rank the inhibitors. However, no linear correlation between the pIC$_{50}$ and the ΔG could be derived. On contrary, the inhibitors rather fall into two classes with compounds 1 and 2 showing a ΔG of approximately -1175 kcal/mol and compounds 3, 4 and 5 a ΔG around -850 kcal/mol. This last fact necessitates of additional investigations which were beyond the scope of this study. Nevertheless, two interesting aspects that might explain this clear-cut separation have been considered. The first is the sulfur atom in the central heterocycle X of 1 and 2, capable of electrostatic interactions with Tyr155. The second, more relevant aspect is that for region I of 1 and 2 the MEP distribution is more negative compared to that of 3, 4 and 5 [41], a valuable hint for a strong interaction with the nicotinamide moiety. A paradigmatic example is given by compounds 1 (IC$_{50}$ 50 nM) and 4 (IC$_{50}$ 1000 nM), which differ only in the position of the nitrogen on the thiazole ring, and where the MEP distributions for region I and III are inverted (Fig 10). The difference between
their ΔG is consistent, sustaining the importance of specific MEP ranges in region I necessary for the π-π interaction with the nicotinamide moiety.

Thus, we were able for the first time to rank this inhibitor class according to a parameter, ΔG, whereas all conventional scoring methods failed in evaluating the influence of the heterocycle X. Further we could show that a close relationship between MEP distribution of the inhibitors and the interaction with the cofactor must exist.

The representation of the MEP on a molecular isosurface can be a useful method for rationalizing the interactions between molecules or the molecular recognition processes [55]. Thus, the MEP maps for the “receptor” complex R1 and the “receptor-compound 1” complex T1 were calculated by plotting the electrostatic potential on the electron density (Fig 11). Clear differences emerged for the nicotinamide moiety and the Tyr155 areas of the two maps. The former, in particular, is red for complex R1 (negative MEP), suggesting a polarized and reactive area, whereas for complex T1 the nicotinamide ring was shifted to green/yellow in the color scale, indicating a neutral, less reactive area (Fig 11). This might be due the electron rearrangement occurring for the nicotinamide ring when NADPH and compound 1 interact: the π-electrons from the upper side of the nicotinamide (red in R1) are drawn toward the inhibitor where they are involved in the π-π stacking interaction.

3. SAR elucidation in the light of the alternative binding mode.

In order to rationalize the stringent SAR observed for this class of inhibitors of 17β-HSD1, as well as to verify the final active site conformations emerged from the MD simulations, we docked selected active and inactive derivatives (Table 2) into the stable conformation of D1, D2, and D3 using GOLD v4.0.1 [56-57]. These compounds are variously substituted in para (R1) or meta (R2) position on the m-hydroxyphenyl-ring, on the central arene X (R3) as well as in meta position on the p-hydroxyphenyl-ring (R4). Remarkably, whenever a substituent caused a modification of the “optimal” MEP distribution ranges, it always resulted in a detrimental effect on the activity.

The most critical substituent seems to be R1: already small substituents like Me (6), OH (7) and F (8) reduce drastically the inhibitory potency, most likely hindering the hydrogen bond formation between the m-OH group and the phosphate oxygen of NADPH due to steric effects or electrostatic repulsion (Fig 12a).
In R_2 a Me (9) reduces the potency, whereas the electronegative F (10) increases it. The reason seems to be the close vicinity to the $\beta F\alpha G'$-loop and to Leu96, on one side, as well as to NADPH and the catalytic Tyr155 on the other side. The docking results suggest that already a small methyl group (Me) might hinder the formation of the H-bond to the cofactor (9; Fig 12b), whereas a F could be involved in halogen bonds with NH- of the coil backbone or with the OH of Tyr155 itself.

When compounds with bulky R_3 substituents (i.e. m-OH-phenyl-; 11; Fig 12d) were docked a different binding pose with respect to that of compound 1 was observed. The characteristic m-OH/p-OH-motif of the bis(hydroxyphenyl)arenes does not fit anymore, whereas the m-OH/m-OH-pattern now allows a better placement of the huge R_3 substituent in the above mentioned pocket. This is also substantiated by the IC_{50} values of compounds 11 (119 nM) and 12 (19 ± 10 % at 1μM).

In R_4 various substituents are tolerated, eventually also leading to a marked increase in potency (i.e. F, 13; Me, 14). R_4 is close to a hydrophobic pocket (more or less present in all three MD simulations $D1$-$D3$), which is delimited by Val 143, Met147, Phe259, Leu262 and Met279. R_4 seems to have two functions: on one hand it can modulate the molecular electrostatic potential distribution of the inhibitor, as seen for F in compound 13 [41], and on the other it can directly undergo hydrophobic interactions with the pocket residues (Met, 14) (Fig 12c).

Summarizing, we used snapshots from the stable segments of the trajectories of $D1$ and $D3$ to dock the class of bis(hydroxyphenyl)arenes. Thereby we succeeded to discriminate between active and inactive compounds based on their binding pose and to explain the influence of substituents (e.g. F as R_1) on the inhibitory potency. The existence of the hydrophobic pocket between the lower $\beta F\alpha G'$-loop region and the N-terminal part of the $\alpha G'$-helix and its capability to accommodate larger R_3 substituents, limited to $D1$ and $D3$, are important findings for future drug design. In particular, it suggests that additional hydroxy-containing moieties might be suitable substituents in this position, even though this would imply to change the m-OH/p-OH pattern. At this respect, also an elongation of the inhibitors on the p-hydroxyphenyl side, e.g. by exchanging it with a naphthalene core, might be a suitable variation. Finally, the importance of conformational sampling and successive choice of the correct enzyme conformation to be used for drug design was evidenced.
Conclusions

Molecular dynamics simulations and MM-PBSA free energy calculations were applied to infer the binding mode of 17β-HSD1 inhibitors belonging to the class of bis(hydroxyphenyl) arenes. In three out of five MD simulations compound 1 oriented itself in the alternative binding mode, where it synergistically interacted with the nicotinamide moiety of NADPH. Besides supporting the alternative binding mode as the likeliest for compound 1, the results of the MD simulations shed new light on the role of the βFαG'-loop in the binding of the class of bis(hydroxyphenyl)arenes. The importance of choosing the correct enzyme conformation to be used for drug design was evidenced, since different, conformation-dependent binding modes could hamper the correct interpretation of the biological results, the SAR and the future drug design.

A global picture emerged from the concerted analysis of the MD studies and the quantum-chemical investigations of the molecular electrostatic potential of five catalytic residues-NADPH-inhibitor complexes. It suggested for this class of inhibitors a novel mechanism of action with respect to that observed for steroidal inhibitors. In fact, the bis(hydroxyphenyl)arenes seem to inhibit the enzyme dynamics by simultaneously binding to active site and cofactor, strongly influenced by electrostatic interactions, and, thus, by “freezing” the loop in a particular conformation. Hence, the enzyme would be restricted into a “half-switching” state, not capable to evolve in its kinetic cycle, in a similar manner as shown for the E. coli DHFR inhibitor methotrexate [58].

Materials and Methods

1. Computational Details.

Crystal structures of 17β-HSD1 were obtained from the Protein Databank (PDB, www.pdb.org) [44]. In detail, we used the following PDB structures: 1fdt, 1i5r and 1iol. 1fdt presents Arg37 and the loop residues Thr190 to Gly198 in two very different conformations, denoted in this article as 1fdtA (open state) and 1fdtB (closed state). For 1i5r the cofactor NADPH was merged into the enzyme after an accurate overlay with 1fdt, thus the hydride inhibitor HYC (1i5r) was removed and NADP⁺ was turned into NADPH. Water molecules were removed and correct atom types set by means
of the software package MOE 2008.10 [59]. Ionization states and hydrogen positions
were assigned using the Protonate 3D utility of MOE, histidines oriented toward the
outer part of the enzyme were considered as protonated after a prediction run made
by MolProbity [60]. Thus, the enzymes were energy minimized applying MMFF94x
force field [61] and generalized Born model and keeping the coordinates of protein
backbone atoms fixed. Successively all the enzyme structures were superimposed
with MOE.
Ligands were described with the general Amber force field GAFF [62]. RESP charges
for compound 1 were calculated, while the parameters of Ulf Ryde were taken for
NADPH (charge -4) (http://www.teokem.lu.se/~ulf/).

2. Molecular Docking.
Molecular docking calculations were performed for all inhibitors of Table 2. GOLD
program [56-57] follows a genetic algorithm (GA) search strategy which enables
flexible docking of small molecules, so no conformational search was employed to
the ligand structures before docking. All ligands were docked in 50 independent GA
runs. The GA default parameters were set as suggested by the GOLD authors. The
automatic active-site detection was switched on. The annealing parameters of fitness
function were set at 3.5 Å for hydrogen bonding and 6.5 Å for van der Waals
interactions. In order to extended the ligand fitting points for the matching of
hydrophobic regions to carbons, halogens and non-polar sulfur atoms the
LIGAND_FITPTS_SELECTION EXTENDED_HAL_S function of the
gold_parameters.dat was switched on. The GOLDSCORE [56] was used as scoring
function to rank the docking poses.

Classical molecular dynamics simulations and binding free energy estimations were
carried out using the Amber 9.0 suite [63] and the AMBER99SB force field [64]. The
simulation system was set up using the xLeap program of the AMBER suite. The
simulation systems were surrounded by a truncated octahedral box of TIP3P [65]
water molecules of 9 Å radius from the protein. Na\(^+\) counter ions were added to
neutralize the system. Prior to the free MD simulations, the simulation systems were
energy minimized for 1000 steps of steepest descent followed by 10000 steps of
conjugate gradient optimization. The equilibration process was carried out with the
program PMEMD on the NVT ensemble using the following procedure [66-68]: the
simulation system was heated during 200 ps from 0 to 200 K at constant volume conditions. This temperature was held for additional 100 ps and afterwards raised to 300 K during 200 ps at constant volume. Protein heavy atoms, NADPH, and compound 1 were kept constraint, and the force constant was gradually reduced from 10 kcal/mol Å2 to 1 kcal/mol Å2. The final coordinates of the temperature equilibration routine were relaxed without restraint for 100 ps and used for the MD production run, performed at NPT physical conditions and without restraints. The total simulation length differed for the various complexes ranging from 10 to 14 ns. Temperature regulation was done at 1.0 atm of pressure by using a Langevin thermostat with a coupling constant of $\tau_{\text{damp}} = 1.5$ ps [69-70]. The time step of the free MD simulations was 2 fs, with a cutoff of 10 Å for the nonbonded interaction, and SHAKE [71] was employed to keep all bonds involving hydrogen atoms rigid. Electrostatic interactions were computed using the Particle Mesh Ewald method [66]. All simulations were carried out in periodic boundary conditions.

The analysis of the trajectories of the MD simulations was performed with the PTRAJ module of AMBER, the MMTSB tool set (http://mmtsb.org) [72] and using visual molecular dynamics (VMD) (http://www.ks.uiuc.edu/Research/vmd/) [73]. Hydrogen bonds, expressed in terms of % occupancy for different time intervals, were measured with the VMD H-Bonds plugin version 1.1, setting the donor-acceptor distance to 3.5 Å and using as angle cutoff 25 degrees. Salt bridges were monitored with the VMD Salt Bridges plugin version 1.0 using as oxygen-nitrogen cut-off 3.5 Å. The PLUMED collective variable analysis tool version 1.0 integrated in VMD was used to measure the motions of the residues over a trajectory with respect to C_α of Met147 (or as for D2 with respect to C_α of Leu149). Graphical presentation of the results was prepared with PyMOL (www.pymol.org) and Excel programs.

4. Free energy calculations using the MM-PBSA method.

Conventional MM-PBSA [45-46] and normal-mode (NMODE) [47] calculations were performed using the AMBER 9 suite. The electronic and van der Waals energies were calculated by the sander module. The polar solvation energy was calculated with the finite-difference PB equation solver by using AMBER toolset.

For each stable sector of the MD trajectories D1-D4b longer than 4 ns (i.e. with an all-atom RMSD variation of less than +/- 0.25 Å from the mean value of the selected timeframe; for D4b a variation of +/- 0.35 was chosen) snapshots were collected every 30th frame (every 30 ps) and used to estimate the binding free energy by
means of MM-PBSA methods and NMODE. The values reported in Table 1a correspond to the following segments: 1fdtA (D1) 6.5-11.5 ns, 1iol (D2) 2.5-7 ns, 1i5r (D3) 6.5-11 ns, 1fdtB (D4a) 6-12 ns, and 1fdtB (D4b) 7-12 ns. The normal mode analysis was performed to estimate the vibrational component of the entropy. Conjugate gradient and then Newton-Raphson minimizations until the root mean square of the elements of gradient vector was less than 5×10^{-4} kcal/mol were carried out in absence of solvent. A distance-dependent dielectric constant was used to mimic solvent screening. Frequencies of the vibrational modes were computed at 300 K for these minimized structures and using a harmonic approximation of the energies. Due to the high computational demand, only snapshots taken every 100th frame of each trajectory were used to estimate $-T\Delta S$.

5. MEP calculation.

For compounds 1-5 geometry optimization was performed employing the B3LYP hybrid functional [54] in combination with a 6-311++G** basis set using the package Gaussian03 [74]. The molecular electrostatic potential (MEP) maps were plotted using GaussView, version 3.0 [75], the 3D molecular graphics package of Gaussian. These electrostatic potential surfaces were generated by mapping the 6-311++G** electrostatic potentials onto the molecular electron density (isovalue = 0.004 electron/Å) and the ESP values on the surface were color-coded ranging from -0.01 (red) to +0.04 (blue) Hartree.

Acknowledgments

MN is grateful for his co-tutelle PhD between the University of Bologna and Saarland University of which this work was a substantial part.

References

Figure legend.

Fig 1 Reduction from E1 to E2 and the steroidal inhibitors equilin and HYC (O5’-[9-(3,17β-Dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl] adenosine)

Fig 2 Schematic representation of the active site of 17β-HSD1 and of the putative entrance or/and exit gates 1-3 for the cofactor NADP(H), E1/E2 or the inhibitors

Fig 3 Structures and IC$_{50}$ values of compounds 1-5, representative members of the class of the (m-hydroxyphenyl)-X-(p-hydroxyphenyl)arenes. A strong dependency between the IC$_{50}$ values and the nature of central heterocycle X has been observed.

Fig 4 Docking poses of compound 1 in the closed (1fdtB – yellow; steroidal binding mode; 1 in cyan) and in the opened state of the enzyme (1fdtA – blue; alternative binding mode; 1 in magenta). The cofactor NADPH (green) as well as the βFaG’-loop residues F192-K195 are shown in sticks. P187 and H221 are labeled in purple.

Fig 5 Trajectory analysis of the MD simulations D1 (green), D2 (red) and D3 (blue) (alternative binding mode) reported in terms of a) residue-dependent RMSD fluctuation, b) time-dependent all-atom RMSD fluctuation for all 285 residues, c) time-dependent all-atom RMSD fluctuation for the βFaG’-loop, and d) time-dependent fluctuation of the inhibitor with respect to its starting (docking) pose.

Fig 6 Analysis of the MD simulations D1, D2 and D3 with compound 1 in the alternative binding mode. a) Overlay of the initial (blue) and the average structure of the stable segment (yellow) of D1. b) Overlay of the initial (blue/cyan) and the average structure of the stable segment (magenta) of D2. c) Overlay of the initial (orange) and the average structure of the stable segment (blue) of D3. Important residues are rendered as lines, compound 1 and NADPH as sticks.

Fig 7 Schematic representation of the binding mode of compound 1 in the stable part of D1. Apolar residues are colored in green, while hydrophilic ones in magenta. The H-bonds between 1 and Lys195, H221 and the cofactor NADPH (here NAH) are highlighted by dotted lines.
Fig 8 Trajectory analysis of the MD simulations of the complexes D4a (green) and D4b (blue) (steroidal binding mode) reported in terms of: a) residue-dependent RMSD fluctuation; b) time-dependent all-atom RMSD fluctuation for all 285 residues; c) time-dependent all-atom RMSD fluctuation for the βFoG’-loop; and d) time-dependent fluctuation of the inhibitor with respect to its starting (docking) pose.

Fig 9 Analysis of the MD simulations D4a and D4b with compound 1 in the steroid binding mode. Both the initial (D4a light green; D4b violet) and the enzyme 3D-structures representative for the stable segment of D4a (green) and D4b (magenta) are superimposed with the common starting conformation (residues colored in yellow).

Fig 10 Differences in the MEP maps of compounds 1 and 4 in region I (m-hydroxyphenyl ring) and III (p-hydroxyphenyl ring) and the complementarity to the nicotinamide moiety of NADPH.

Fig 11 a) Differences of the electrostatic potential distribution for binary and ternary complex, enzyme-NADPH-1 and enzyme-NADPH, respectively, and b) correlation between the pIC50 values of compounds 1-5 and the energy difference between the two complexes (ΔG).

Fig 12 Docking poses of compounds 6 (a), 9 (b), 14 (c) and 11 (d) in the optimized average structure of the stable RMSD plateau of D1. The binding pocket is represented in dots, which are color-coded from cyan (hydrophobic) over green (slightly polar) to magenta (polar area). The subpocket formed over the simulation time is delimited by L96 and F226 and it can host an additional m-OH-phenyl moiety as seen for compound 11 (d).
Tables.

Table 1 Free energy calculations for the MD simulations D1-D3 and D4a-4b.

a) Free binding energies (ΔG_{bind}) for the complexes D1-D4b computed by means of MM-PBSA methods and NMODE analysis.

b) Relative binding affinity ($\Delta \Delta G_{\text{bind}}$) of compound 1 determined as the difference between ΔG_{bind} and ΔG_{E1}, obtained for the same enzyme conformer, respectively. ΔG_{E1} values taken from ref [43].

<table>
<thead>
<tr>
<th>a</th>
<th>E</th>
<th>PDB</th>
<th>MDS</th>
<th>ELE</th>
<th>VDW</th>
<th>GAS</th>
<th>PBSOL</th>
<th>PBTOT (ΔH)</th>
<th>TSTOT (ΔS)</th>
<th>ΔG_{bind}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mean</td>
<td>std. err.</td>
<td>mean</td>
</tr>
<tr>
<td>“alternative” BM - enzyme-NADPH-1</td>
<td></td>
</tr>
<tr>
<td>opened</td>
<td>1fdtA</td>
<td>D1</td>
<td>-36.01</td>
<td>-34.01</td>
<td>-70.02</td>
<td>44.09</td>
<td>-25.94</td>
<td>0.36</td>
<td>-16.75</td>
<td>0.74</td>
</tr>
<tr>
<td>occluded</td>
<td>1iol</td>
<td>D2</td>
<td>-18.35</td>
<td>-34.32</td>
<td>-52.67</td>
<td>31.25</td>
<td>-21.41</td>
<td>0.52</td>
<td>-11.94</td>
<td>0.43</td>
</tr>
<tr>
<td>occluded</td>
<td>1i5r</td>
<td>D3</td>
<td>-24.49</td>
<td>-36.27</td>
<td>-60.76</td>
<td>36.32</td>
<td>-24.45</td>
<td>0.55</td>
<td>-20.33</td>
<td>0.69</td>
</tr>
<tr>
<td>steroidal BM - enzyme-NADPH-1</td>
<td></td>
</tr>
<tr>
<td>closed</td>
<td>1fdtB</td>
<td>D4a</td>
<td>-11.36</td>
<td>-37.49</td>
<td>-48.84</td>
<td>28.88</td>
<td>-19.97</td>
<td>0.49</td>
<td>-17.49</td>
<td>0.78</td>
</tr>
<tr>
<td>2ns extension of D4a</td>
<td></td>
<td></td>
<td>-13.3</td>
<td>-37.18</td>
<td>-50.48</td>
<td>26.42</td>
<td>-24.06</td>
<td>0.41</td>
<td>-13.78</td>
<td>0.56</td>
</tr>
<tr>
<td>closed</td>
<td>1fdtB</td>
<td>D4b</td>
<td>-7.6</td>
<td>-30.12</td>
<td>-37.71</td>
<td>21.61</td>
<td>-16.09</td>
<td>0.44</td>
<td>-19.66</td>
<td>0.62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b</th>
<th>MDS</th>
<th>ΔG_{E1}</th>
<th>$\Delta G_{\text{bind}} = \Delta G_{\text{bind}} - \Delta G_{E1}$</th>
<th>$\beta F \alpha G'$-loop</th>
<th>binding mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>-2.6</td>
<td>-6.59</td>
<td>open (1fdtA)</td>
<td>alternative</td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>-0.96</td>
<td>-3.16</td>
<td>occluded (1i5r)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D4a</td>
<td>-8.31</td>
<td>5.83</td>
<td>close (1fdtB)</td>
<td>steroidal</td>
<td></td>
</tr>
<tr>
<td>D4b</td>
<td>11.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ΔH, ΔS and ΔG_{bind} values reported are calculated for the stable RMSD plateau of each MD.

a (E) starting conformation of the enzyme;
b (MDS) molecular dynamics simulation code;
c (ELEC) electrostatic contribution in gas phase;
d (VDW) Van der Waals contribution in gas phase;
e (GAS) free energy in vacuum;
f (PBSOL) solvation energy;
g (PBTOT) (ΔH) enthalpy;
h (TSTOT) (ΔS) entropic contribution;
i (ΔG_{bind}) free binding energy;
j (ΔG_{E1}) free binding energy calculated for the substrate E1 by means of MMPBSA/NMODE based on MDS with the different enzyme conformers;
(mean) mean value; (std. err.) standard error of the mean; all energies expressed in kcal/mol.
Table 2 17β-HSD1 inhibitors of the series of the bis(hydroxyphenyl)arenes. Activity differences are observed due to single substitutions on the three ring systems.

<table>
<thead>
<tr>
<th>compound</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>Y</th>
<th>IC₅₀ (nM) (% at 1μM)ᵃ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>Met</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>(19)</td>
</tr>
<tr>
<td>7</td>
<td>OH</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>(16)</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>113</td>
</tr>
<tr>
<td>9</td>
<td>H</td>
<td>Met</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>629</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>C</td>
<td>42</td>
</tr>
<tr>
<td>11</td>
<td>H</td>
<td>H</td>
<td>mOH-Ph⁻</td>
<td>H</td>
<td>C</td>
<td>119</td>
</tr>
<tr>
<td>12</td>
<td>H</td>
<td>H</td>
<td>mOH-Ph⁻</td>
<td>H</td>
<td>C</td>
<td>(31)</td>
</tr>
<tr>
<td>13</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>F</td>
<td>C</td>
<td>8</td>
</tr>
<tr>
<td>14</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>Met</td>
<td>C</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>C₂H₄COOEt</td>
<td>C</td>
<td>135</td>
</tr>
</tbody>
</table>

ᵃExperimental IC₅₀ and % inhibition values are retrieved from references [39-40]
Figure legend.

Fig 1 Reduction from E1 to E2 and the steroidal inhibitors equilin and HYC (O5'-[9-(3,17β-Dihydroxy-1,3,5(10)-estratrien-16β-yl)-nonanoyl] adenosine)

Fig 2 Schematic representation of the active site of 17β-HSD1 and of the putative entrance or/and exit gates 1-3 for the cofactor NADP(H), E1/E2 or the inhibitors
Fig 3 Structures and IC$_{50}$ values of compounds 1-5, representative members of the class of the $(m$-hydroxyphenyl)$-X$-$(p$-hydroxyphenyl)arenes. A strong dependency between the IC$_{50}$ values and the nature of central heterocycle X has been observed.

Fig 4 Docking poses of compound 1 in the closed (1fdtB – yellow; steroidal binding mode; 1 in cyan) and in the opened state of the enzyme (1fdtA – blue; alternative binding mode; 1 in magenta). The cofactor NADPH (green) as well as the βFgG'-loop residues F192-K195 are shown in sticks. P187 and H221 are labeled in purple.
Fig 5 Trajectory analysis of the MD simulations D1 (green), D2 (red) and D3 (blue) (alternative binding mode) reported in terms of a) residue-dependent RMSD fluctuation, b) time-dependent all-atom RMSD fluctuation for all 285 residues, c) time-dependent all-atom RMSD fluctuation for the βFαG'-loop, and d) time-dependent fluctuation of the inhibitor with respect to its starting (docking) pose.
Fig 6 Analysis of the MD simulations D1, D2 and D3 with compound 1 in the alternative binding mode. a) Overlay of the initial (blue) and the average structure of the stable segment (yellow) of D1. b) Overlay of the initial (blue/cyan) and the average structure of the stable segment (magenta) of D2. c) Overlay of the initial (orange) and the average structure of the stable segment (blue) of D3. Important residues are rendered as lines, compound 1 and NADPH as sticks.
Fig 7 Schematic representation of the binding mode of compound 1 in the stable part of D1. Apolar residues are colored in green, while hydrophilic ones in magenta. The H-bonds between 1 and Lys195, H221 and the cofactor NADPH (here NAH) are highlighted by dotted lines.
Fig 8 Trajectory analysis of the MD simulations of the complexes D4a (green) and D4b (blue) (steroidal binding mode) reported in terms of: a) residue-dependent RMSD fluctuation; b) time-dependent all-atom RMSD fluctuation for all 285 residues; c) time-dependent all-atom RMSD fluctuation for the βFαG'-loop; and d) time-dependent fluctuation of the inhibitor with respect to its starting (docking) pose.
Fig 9 Analysis of the MD simulations D4a and D4b with compound 1 in the steroid binding mode. Both the initial (D4a light green; D4b violet) and the enzyme 3D-structures representative for the stable segment of D4a (green) and D4b (magenta) are superimposed with the common starting conformation (residues colored in yellow).

Fig 10 Differences in the MEP maps of compounds 1 and 4 in region I (m-hydroxyphenyl ring) and III (p-hydroxyphenyl ring) and the complementarity to the nicotinamide moiety of NADPH.
Fig 11
a) Differences of the electrostatic potential distribution for binary and ternary complex, enzyme-NADPH-1 and enzyme-NADPH, respectively, and b) correlation between the pIC$_{50}$ values of compounds 1-5 and the energy difference between the two complexes (ΔG).
Fig 12 Docking poses of compounds 6 (a), 9 (b), 14 (c) and 11 (d) in the optimized average structure of the stable RMSD plateau of D1. The binding pocket is represented in dots, which are color-coded from cyan (hydrophobic) over green (slightly polar) to magenta (polar area). The subpocket formed over the simulation time is delimited by L96 and F226 and it can host an additional m-OH-phenyl moiety as seen for compound 11 (d)