Immune Protection against Virus Challenge in Aging Mice Is Not Affected by Latent Herpesviral Infections.

Latent herpesvirus infections alter immune homeostasis. To understand if this results in aging-related loss of immune protection against emerging infections, we challenged old mice carrying latent mouse cytomegalovirus (CMV), herpes simplex virus 1 (HSV-1), and/or murine gammaherpesvirus 68 (MHV-68) with influenza virus, West Nile virus (WNV), or vesicular stomatitis virus (VSV). We observed no increase in mortality or weight loss compared to results seen with herpesvirus-negative counterparts and a relative but not absolute reduction in CD8 responses to acute infections. Therefore, the presence of herpesviruses does not appear to increase susceptibility to emerging infections in aging patients.

The vast majority of people carry a combination of latent herpesviruses which may cause severe disease and death if they reactivate upon immune suppression (1–4). It has been proposed that human cytomegalovirus (HCMV) infection may be a major environmental factor accelerating immune senescence in older people (5–10).

Studies in the mouse cytomegalovirus (MCMV) model of infection and immunity recapitulated the key aspects of cellular immunity to HCMV (11–14). More recently, we showed that MCMV induces permanent changes of the CD8 T-cell compartment (15), consistent with the changes observed in elderly CMV-seropositive people (5, 16). Furthermore, responses to emerging virus (e.g., lymphocytic choriomeningitis virus [LCMV], influenza virus, or West Nile virus [WNV]) were reduced in aging mice infected with MCMV, although the CD8 response to Listeria monocytogenes was not affected by latent MCMV or herpes simplex virus 1 (HSV-1) infection (17). Independent studies have shown that infectious influenza virus titers are elevated in old mice carrying latent MCMV infection (18), albeit immune protection against superinfections was improved in young mice carrying latent virus (19, 20).

Therefore, whether herpesviruses impair T-cell-mediated immune protection against viral infections of older hosts remains unclear. To address this issue, we performed a series of animal experiments at Oregon Health and Science University (OHSU) following IACUC protocol 0724 or at Helmholtz Centre for Infection Research (HZI) in compliance with LAVES permit number 33.9-42502-04-11/0109, DBA2xBALB/c F1 mice (6, 12, 16, or 20 months of age) were intraperitoneally infected with 2 × 10^5 PFU MCMV or 10^6 PFU Western Reserve vaccinia virus (VACV) or mock infected and were challenged with 50 PFU of WNV at 22 months of age, as detailed previously (15). A nonsignificant increase in mortality over mock controls was observed in MCMV-infected mice (P = 0.092) but also in VACV-infected mice (P = 0.085) (Fig. 1A). Therefore, within the limits of our experiment, we observed no MCMV-specific effects on immune protection of aging hosts against WNV. To validate this finding, we compared weight loss kinetics upon sublethal influenza virus challenge in 129Sv mice, challenged with 300 50% egg infective doses (EID_50) of influenza virus (PR/8/34 strain). Levels of weight loss were not statistically different between mice infected with MCMV and those infected with VACV for 5 months prior to challenge and the mock-infected controls (Fig. 1B); if anything, the level of weight loss was slightly lower in the MCMV group, in line with observations in young mice (19). Similar results were observed in BALB/cx57BL/6 mice (not shown). Finally, to test the effect of latent infection by representatives of all herpesvirus families, we latently infected DBA2xC57BL/6 F1 mice with HSV-1 strain 17, MCMV (21), or murine gammaherpesvirus 68 (MHV-68) (22) or with all three viruses together and challenged the mice with VSV at 15 months of age, as detailed previously (23). We observed no significant differences in levels of weight loss (Fig. 1C) or survival (Fig. 1D) compared to mock- or VACV-infected mice. Hence, our results argue that herpesviral infections do not impair immune protection against viral challenges.

Importantly, frequencies of CD8 T cells specific for an H-2Kb-restricted VSV peptide (RGYVYQQGL) were reduced in latently infected mice (Fig. 2A), consistent with our previous report on CD8 T cells responding to WNV or influenza virus in latent MCMV infection (15). However, the absolute counts of RGYVYQQGL-specific CD8 T cells were similar in all groups (Fig. 2B). Similar effects were observed by measuring functional cytokine responses (data not shown) and in DBA/2xC57BL/6 F1 mice.
Therefore, the VSV response was not reduced in absolute terms, but only relatively, likely due to the doubling of the blood CD8 compartment in latent MCMV infection (15 and not shown). In conclusion, our data strongly argue that herpesvirus infections (including MCMV infections) do not exert massive adverse effects upon functional immune responses and protection against emerging pathogens in aging patients, alleviating concerns about the MCMV-induced decline in the immune response in aging populations.

ACKNOWLEDGMENTS

We thank Byung Park, Julia Holzki, Franziska Dag, Klaus Schughart, Paulina Blazejewska, Adrien Weingärtner, Linda Ebermann, and Rosalya Calesnigo for expert technical advice and Ilona Bretag, Ayse Barut, Inge Hollatz-Rangosch, Nils Hapke, Oliver Hartmann, and Jennifer Wolf for excellent technical support.

This work was supported by the Helmholtz Association through grants NG-VH-638 and VI-VH-424 to L.C.-S.
REFERENCES


November 2015 Volume 89 Number 22 Journal of Virology jvi.asm.org 11177

Herpesviruses Do Not Impair Immune Protection in Aging