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1 Comparison between 16S rRNA gene sequencing and shotgun metagenomic sequencing

Two primary methods for taxonomic profiling of microbial communities exist: 16S gene sequencing and whole genome shotgun sequencing (WGS).
The advantages and disadvantages of 16S gene sequencing versus WGS methods for the purpose of taxonomic profiling are listed in the following.

1.1 Advantages of 16S rRNA sequencing

Cost: currently, 16S gene sequencing is significantly more cost-effective than WGS and requires less starting material than WGS [5]. The low cost of
16S gene sequencing is one of the primary reasons for its widespread use.

1.2 Disadvantages of 16S rRNA sequencing

e No gold standard hyper-variable region: The full 16S gene sequence length cannot be sequenced by all sequencing technologies (short-read
second-generation platforms). Thus, the hyper-variable regions need to be sequenced instead. However, there is no consensus about choice of
hyper-variable regions influencing the phylogenetic resolution [14].

e Precision of taxonomic assignment: 16S rRNA sequencing has a lower precision compared to WGS in taxonomic assignment [15]. While
WGS may be used to assign species-level classifications to many sequences with confidence, 16S rRNA sequencing classification is typically
restricted to the genus-level, with species-level predictions based on OTUs being of generally lower precision [16]. In addition, fungal and viral
genomes, which do not contain 16S rRNA genes and thus are not picked up with 16S rRNA sequencing, are sequenced during WGS.

e Bias: 16S rRNA sequencing suffers from significant PCR amplification biases. This is a result of differences in PCR primer binding to certain
16S rTRNA gene sequences, which may cause entire groups of bacteria to be underrepresented in the sample [5]. In addition to PCR amplification
biases, over estimation of « diversity and profiling pipeline can also introduce biases in the 16S rRNA data [14]. WGS is a comparatively
unbiased method for taxonomic profiling.

2 Evaluation metrics

2.1 Precision, Recall, F1

Precision, recall (sensitivity), and F1 are among the most popular metrics for evaluation of classification performance in machine learning. Precision

and recall are defined as: N o
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F1 score (0 < F1 < 1) is the harmonic average of the precision and recall maintaining a balance between both precision and recall:
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2.2 Micro versus Macro averaged metrics

In the evaluation, we distinguish between micro and macro metrics. Micro-averaging is average of metrics over instances (samples), while macro
averaging computes the metrics for each class separately and then simply average over classes. Macro-metrics are useful when we want to give equal
importance to all categories, although the categories are imbalanced.

In this paper in order to provide detailed information on how our classifiers perform in both micro and macro cases, we have reported both micro-
and macro- averaging precision and recall. In particular we optimized our classifiers for macro-F1 to make a trade of between precision and recall as
well as giving equal importance to all categories.

3 Visualization Methods

Principal component analysis (PCA): is one of the most widely used techniques for dimensionality reduction. PCA provides us with the principal
directions (V's) in which the data exhibits maximum variation. These principal directions are the eigenvectors of the data covariance matrix and the
eigenvalue corresponding to each eigenvector indicates the variance of the data in that particular direction. Thus, by a linear transformation we can
project the data to a low-dimensional space with principal directions as the axes. Despite its widespread use in modern data analysis, PCA has some
limitations. Since PCA involves covariance matrix estimation and eigenvalue decomposition, the computational complexity of PCA for M samples,
each represented with m features, is of the order O(m2?M + m?). In addition, in order to have a reliable estimation of the covariance matrix, PCA
requires a large number of samples and typically underperforms with limited numbers of data points. Finally, PCA is a linear transformation with
several constraints, and thus cannot address the non-linearity in the data [18, 1].

t-Distributed Stochastic Neighbor Embedding (t-SNE): is a dimensionality reduction technique which has been successfully applied to
visualization problems, since it attempts to preserve pairwise distance distribution of points in lower dimensions [19]. Since projection to lower
dimensions involves the distribution of relative distances, it requires large amounts of data points in order to find a meaningful representation. t-SNE
is a nonlinear transformation with a computational complexity of O(M?). However, a recent implementation of t-SNE has been reported to have a
computational complexity of O(M log(M)) [20]. t-SNE is a relatively new technique in machine learning, and only recently has been used for the
analysis of genomic data [2, 13, 3, 12].

Supervised representation learning: both PCA and t-SNE are unsupervised methods, meaning that the output representation is trained
independently from the instances’ categories. Deep neural models provide a powerful framework for training multiple levels of representation for the
input data in both unsupervised and supervised manners. In supervised training, like multi-class classification task, specialized representations of the
input data are trained using the back-propagation algorithm [17]. In such framework, the activation function of the last hidden-layer for the input
data is a specialized representation of data for that particular task or even other tasks [4]. Such a representation trained in a supervised manner can
also be visualized using t-SNE or other visualization techniques.

4 Body-site classification results

4.1 Confusion matrix for body-site classification using different sampling sizes

As shown in the Figure 1, increase in the sampling size from 100 reads per sample helps in discrimination between similar body-sites (mid-vagina and
urogenital). However, further increases (more then 5000 reads per sample) results in over-fitting.
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Figure 1: The confusion matrix for the classification of 5 major body-sites for different sampling sizes, using Random Forest classifier in a 10xfold
cross-validation scheme. The presented body-sites are saliva (o: oral), mid-vagina (u: urogenital), anterior nares (n: nasal), stool (g: gut), and posterior fornix
(u: urogenital).



5 Crohn’s disease results

The human microbiome appears to play a particularly important role in the development of Crohns disease. Crohns disease is an inflammatory bowel
disease (IBD) with a prevalence of approximately 40 per 100,000 and 200 per 100,000 in children and adults, respectively [9]. In contrast to Ulcerative
Colitis, which exhibits shallow inflammation of the tissue, Crohns disease is characterized by ulcerous transmural inflammation that extends deep into
the tissue of the gut [10]. Previous genome-wide association studies have demonstrated a link between intestinal microbe response pathways and IBD
development [7]. This evidence, along with observations of significantly altered microbiome compositions in IBD patients in humans, points towards
a role for the microbiome in the regulation of IBD. While the mechanism for this regulation is not well understood, it is thought that dysbiosis of the
intestinal microbiome may impact the immune system within the intestine, leading to the progression of Crohns disease.

5.1 Bootstrapping result for Crohn’s disease dataset

Similar to bootstrapping for the body-site dataset, Dgand Dy for different values of k with respect to sampling sizes are shown in Figure 2. The
structure of the curve is similar to the body-site dataset. For each k, the interval that Dg and Dg converge to their minimum values show a propoer
range for picking a sampling size resulting in self-consistent and representative representations.

6 Ecological environments classification results

The confusion matrix for 18-way classification of ecological environments is shown in Figure 3. The confusion matrix shows that most of the major
miss-classifications are due to similarities between the environment pairs, examples are (marine sediment, sediment), (food, food fermentation), and
(marine, aquatic).

7 Organismal environment classification results

The confusion matrix for the task of classifying the 5 organisms’ gut environments is presented in Figure 4. In addition, visualizations of representative
16S rRNA gene sequences in 5 organisms’ guts obtained through using PCA, t-SNE, and t-SNE on the activation function of the last layer of the
trained Neural Network is depicted in Figure 5.

8 Representation creation run-time comparison

A comparison between run-time for k-mer representation creation versus OTU picking for NTH Human Microbiome Project samples [11, 8] and Crohn’s
disease samples [6] are summarized in Table 1.
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Figure 2: Measuring self-inconsistency (Dg) and unrepresentativeness (Dg) for the Crohn’s disease dataset. Each point presents the average of
100 resamples belonging to 10 randomly selected 16S rRNA samples. Higher k values require higher sampling rates to produce self-consistent and
representative samples.

Database # of samples | Run-time for k-mers | Run-time for OTU
Crohn’s disease 1359 381 sec 5125 sec
Body-site 12075 3339 sec 66996 sec

Table 1: Run-time comparsion between OTU versus k-mer representation creation.
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Figure 3: Confusion matrix for classification of 18 ecological environments using SVM classifier.



human gut

' 400

chicken gut

300

bovine gut
200

Actual labels

100

mouse gut

termite gut

Se gut

gut
Chickey, gut
bovine g,
Mouge 4
e

humay,

Predicted labels

Figure 4: Confusion matrix for classification of 5 organismal environments using SVM classifier.



(i) PCA over 6-mer representations

(ii) t-SNE over 6-mer representations

(iii) t-SNE / activation function of the last layer of neural network
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Figure 5: Visualization of 5 organismal environments using different projection methods: (i) PCA over 6-mer distributions with unsupervised training,
(ii) t-SNE over 6-mer distributions with unsupervised training, (iii) visualization of the activation function of the last layer of the trained Neural
Network (projected to 2D using t-SNE).
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