head of the department: Prof. Dr. Stradal

Recent Submissions

  • Regulation of MRTF-A by JMY via a nucleation-independent mechanism.

    Kluge, Franziska; Weissbach, Julia; Weber, Anja; Stradal, Theresia; Posern, Guido; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2018-11-21)
    MRTF-A (myocardin-related transcription factor A) is a coactivator for SRF-mediated gene expression. The activity of MRTF-A is critically dependent on the dissociation of G-actin from N-terminal RPEL motifs. MRTF-SRF induction often correlates with enhanced polymerization of F-actin. Here we investigate MRTF regulation by the multifunctional JMY protein, which contains three WASP/verprolin homology 2 (WH2/V) domains and facilitates Arp2/3-dependent and -independent actin nucleation. Co-immunoprecipitation experiments, immunofluorescence and luciferase reporter assays were combined with selective inhibitors to investigate the effect of JMY and its domains on MRTF-A in NIH 3 T3 mouse fibroblasts. JMY induced MRTF-A transcriptional activity and enhanced its nuclear translocation. Unexpectedly, MRTF-A was hyperactivated when the Arp2/3-recruiting CA region of JMY was deleted or mutated, suggesting an autoinhibitory mechanism for full-length JMY. Moreover, isolated WH2/V domains which are unable to nucleate actin were sufficient for nuclear accumulation and SRF activation. Recombinant WH2/V regions of JMY biochemically competed with MRTF-A for actin binding. Activation of MRTF-A by JMY was unaffected by Arp3 knockdown, by an Arp2/3 inhibitor, and by latrunculin which disassembles cellular F-actin. Restriction of JMY to the nucleus abrogated its MRTF-A activation. Finally, JMY RNAi reduced basal and stimulated transcriptional activation via MRTF-A. Our results suggest that JMY activates MRTF-SRF independently of F-actin via WH2/V-mediated competition with the RPEL region for G-actin binding in the cytoplasm. Furthermore, the C-terminal region facilitates an autoinhibitory effect on full-length JMY, possibly by intramolecular folding.
  • Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Non-redundant Functions in Vivo.

    Schaks, Matthias; Singh, Shashi P; Kage, Frieda; Thomason, Peter; Klünemann, Thomas; Steffen, Anika; Blankenfeldt, Wulf; Stradal, Theresia E; Insall, Robert H; Rottner, Klemens; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-25)
    Cell migration often involves the formation of sheet-like lamellipodia generated by branched actin filaments. The branches are initiated when Arp2/3 complex [1] is activated by WAVE regulatory complex (WRC) downstream of small GTPases of the Rac family [2]. Recent structural studies defined two independent Rac binding sites on WRC within the Sra-1/PIR121 subunit of the pentameric WRC [3, 4], but the functions of these sites in vivo have remained unknown. Here we dissect the mechanism of WRC activation and the in vivo relevance of distinct Rac binding sites on Sra-1, using CRISPR/Cas9-mediated gene disruption of Sra-1 and its paralog PIR121 in murine B16-F1 cells combined with Sra-1 mutant rescue. We show that the A site, positioned adjacent to the binding region of WAVE-WCA mediating actin and Arp2/3 complex binding, is the main site for allosteric activation of WRC. In contrast, the D site toward the C terminus is dispensable for WRC activation but required for optimal lamellipodium morphology and function. These results were confirmed in evolutionarily distant Dictyostelium cells. Moreover, the phenotype seen in D site mutants was recapitulated in Rac1 E31 and F37 mutants; we conclude these residues are important for Rac-D site interaction. Finally, constitutively activated WRC was able to induce lamellipodia even after both Rac interaction sites were lost, showing that Rac interaction is not essential for membrane recruitment. Our data establish that physical interaction with Rac is required for WRC activation, in particular through the A site, but is not mandatory for WRC accumulation in the lamellipodium.
  • Actin dynamics in host-pathogen interaction.

    Stradal, Theresia E B; Schelhaas, Mario; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-23)
    The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen-induced or -hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
  • FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42.

    Kage, Frieda; Steffen, Anika; Ellinger, Adolf; Ranftler, Carmen; Gehre, Christian; Brakebusch, Cord; Pavelka, Margit; Stradal, Theresia; Rottner, Klemens; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-08-29)
    The Rho-family small GTPase Cdc42 localizes at plasma membrane and Golgi complex and aside from protrusion and migration operates in vesicle trafficking, endo- and exocytosis as well as establishment and/or maintenance of cell polarity. The formin family members FMNL2 and -3 are actin assembly factors established to regulate cell edge protrusion during migration and invasion. Here we report these formins to additionally accumulate and function at the Golgi apparatus. As opposed to lamellipodia, Golgi targeting of these proteins required both their N-terminal myristoylation and the interaction with Cdc42. Moreover, Golgi association of FMNL2 or -3 induced a phalloidin-detectable actin meshwork around the Golgi. Importantly, functional interference with FMNL2/3 formins by RNAi or CRISPR/Cas9-mediated gene deletion invariably induced Golgi fragmentation in different cell lines. Furthermore, absence of these proteins led to enlargement of endosomes as well as defective maturation and/or sorting into late endosomes and lysosomes. In line with Cdc42 - recently established to regulate anterograde transport through the Golgi by cargo sorting and carrier formation - FMNL2/3 depletion also affected anterograde trafficking of VSV-G from the Golgi to the plasma membrane. Our data thus link FMNL2/3 formins to actin assembly-dependent functions of Cdc42 in anterograde transport through the Golgi apparatus.
  • FMNL formins boost lamellipodial force generation.

    Kage, Frieda; Winterhoff, Moritz; Dimchev, Vanessa; Mueller, Jan; Thalheim, Tobias; Freise, Anika; Brühmann, Stefan; Kollasser, Jana; Block, Jennifer; Dimchev, Georgi; Geyer, Matthias; Schnittler, Hans-Joachim; Brakebusch, Cord; Stradal, Theresia E B; Carlier, Marie-France; Sixt, Michael; Käs, Josef; Faix, Jan; Rottner, Klemens; Helmholtz Centre for infection research, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-03-22)
    Migration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion. Loss of FMNL2/3 function in melanoma cells and fibroblasts reduces lamellipodial width, actin filament density and -bundling, without changing patterns of Arp2/3 complex incorporation. Strikingly, in melanoma cells, FMNL2/3 gene inactivation almost completely abolishes protrusion forces exerted by lamellipodia and modifies their ultrastructural organization. Consistently, CRISPR/Cas-mediated depletion of FMNL2/3 in fibroblasts reduces both migration and capability of cells to move against viscous media. Together, we conclude that force generation in lamellipodia strongly depends on FMNL formin activity, operating in addition to Arp2/3 complex-dependent filament branching.
  • Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments.

    Thiam, Hawa-Racine; Vargas, Pablo; Carpi, Nicolas; Crespo, Carolina Lage; Raab, Matthew; Terriac, Emmanuel; King, Megan C; Jacobelli, Jordan; Alberts, Arthur S; Stradal, Theresia; Lennon-Dumenil, Ana-Maria; Piel, Matthieu; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
    Cell migration has two opposite faces: although necessary for physiological processes such as immune responses, it can also have detrimental effects by enabling metastatic cells to invade new organs. In vivo, migration occurs in complex environments and often requires a high cellular deformability, a property limited by the cell nucleus. Here we show that dendritic cells, the sentinels of the immune system, possess a mechanism to pass through micrometric constrictions. This mechanism is based on a rapid Arp2/3-dependent actin nucleation around the nucleus that disrupts the nuclear lamina, the main structure limiting nuclear deformability. The cells' requirement for Arp2/3 to pass through constrictions can be relieved when nuclear stiffness is decreased by suppressing lamin A/C expression. We propose a new role for Arp2/3 in three-dimensional cell migration, allowing fast-moving cells such as leukocytes to rapidly and efficiently migrate through narrow gaps, a process probably important for their function.
  • How distinct Arp2/3 complex variants regulate actin filament assembly.

    Rottner, Klemens; Stradal, Theresia E B; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015-12-23)
    The heptameric Arp2/3 complex generates branched actin filament networks that drive lamellipodium protrusion, vesicle trafficking and pathogen motility. Distinct variants of the Arp2/3 complex are now shown to have different roles in tuning actin assembly and disassembly, in concert with the prominent actin regulators cortactin and coronin.
  • The EHEC-host interactome reveals novel targets for the translocated intimin receptor.

    Blasche, Sonja; Arens, Stefan; Ceol, Arnaud; Siszler, Gabriella; Schmidt, M Alexander; Häuser, Roman; Schwarz, Frank; Wuchty, Stefan; Aloy, Patrick; Uetz, Peter; Stradal, Theresia; Koegl, Manfred; Helmholtz Centre for infection research; Inhooffenstr. 7; D-38124 Braunschweig; Germany. (2014)
    Enterohemorrhagic E. coli (EHEC) manipulate their human host through at least 39 effector proteins which hijack host processes through direct protein-protein interactions (PPIs). To identify their protein targets in the host cells, we performed yeast two-hybrid screens, allowing us to find 48 high-confidence protein-protein interactions between 15 EHEC effectors and 47 human host proteins. In comparison to other bacteria and viruses we found that EHEC effectors bind more frequently to hub proteins as well as to proteins that participate in a higher number of protein complexes. The data set includes six new interactions that involve the translocated intimin receptor (TIR), namely HPCAL1, HPCAL4, NCALD, ARRB1, PDE6D, and STK16. We compared these TIR interactions in EHEC and enteropathogenic E. coli (EPEC) and found that five interactions were conserved. Notably, the conserved interactions included those of serine/threonine kinase 16 (STK16), hippocalcin-like 1 (HPCAL1) as well as neurocalcin-delta (NCALD). These proteins co-localize with the infection sites of EPEC. Furthermore, our results suggest putative functions of poorly characterized effectors (EspJ, EspY1). In particular, we observed that EspJ is connected to the microtubule system while EspY1 appears to be involved in apoptosis/cell cycle regulation.