group leader: Prof. Blankenfeldt

Recent Submissions

  • Distinct Interaction Sites of Rac GTPase with WAVE Regulatory Complex Have Non-redundant Functions in Vivo.

    Schaks, Matthias; Singh, Shashi P; Kage, Frieda; Thomason, Peter; Klünemann, Thomas; Steffen, Anika; Blankenfeldt, Wulf; Stradal, Theresia E; Insall, Robert H; Rottner, Klemens; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-25)
    Cell migration often involves the formation of sheet-like lamellipodia generated by branched actin filaments. The branches are initiated when Arp2/3 complex [1] is activated by WAVE regulatory complex (WRC) downstream of small GTPases of the Rac family [2]. Recent structural studies defined two independent Rac binding sites on WRC within the Sra-1/PIR121 subunit of the pentameric WRC [3, 4], but the functions of these sites in vivo have remained unknown. Here we dissect the mechanism of WRC activation and the in vivo relevance of distinct Rac binding sites on Sra-1, using CRISPR/Cas9-mediated gene disruption of Sra-1 and its paralog PIR121 in murine B16-F1 cells combined with Sra-1 mutant rescue. We show that the A site, positioned adjacent to the binding region of WAVE-WCA mediating actin and Arp2/3 complex binding, is the main site for allosteric activation of WRC. In contrast, the D site toward the C terminus is dispensable for WRC activation but required for optimal lamellipodium morphology and function. These results were confirmed in evolutionarily distant Dictyostelium cells. Moreover, the phenotype seen in D site mutants was recapitulated in Rac1 E31 and F37 mutants; we conclude these residues are important for Rac-D site interaction. Finally, constitutively activated WRC was able to induce lamellipodia even after both Rac interaction sites were lost, showing that Rac interaction is not essential for membrane recruitment. Our data establish that physical interaction with Rac is required for WRC activation, in particular through the A site, but is not mandatory for WRC accumulation in the lamellipodium.
  • Structural insights into antigen recognition of an anti-β-(1,6)-β-(1,3)-D-glucan antibody.

    Sung, Kwang Hoon; Josewski, Jörn; Dübel, Stefan; Blankenfeldt, Wulf; Rau, Udo; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-12)
    Schizophyllan (SCH) is a high molecular weight homopolysaccharide composed of a β-(1,3)-D-glucan main chain with branching β-(1,6)-bound D-glucose residues. It forms triple helices that are highly stable towards heat and extreme pH, which provides SCH with interesting properties for industrial and medical applications. The recombinant anti-SCH antibody JoJ48C11 recognizes SCH and related β-(1,6)-branched β-(1,3)-D-glucans, but details governing its specificity are not known. Here, we fill this gap by determining crystal structures of the antigen binding fragment (Fab) of JoJ48C11 in the apo form and in complex with the unbranched β-(1,3)-D-glucose hexamer laminarihexaose 3.0 and 2.4 Å resolution, respectively. Together with docking studies, this allowed construction of a JoJ48C11/triple-helical SCH complex, leading to the identification of eight amino acid residues of JoJ48C11 (Tyr27
  • Pseudomonas aeruginosa pyoverdine maturation enzyme PvdP has a noncanonical domain architecture and affords insight into a new subclass of tyrosinases

    Poppe, Juliane; Reichelt, Joachim; Blankenfeldt, Wulf; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-21)
    Pyoverdines (PVDs) are important chromophore-containing siderophores of fluorescent pseudomonad bacteria such as the opportunistic human pathogen
  • Exchange of amino acids in the H1-haemagglutinin to H3 residues is required for efficient influenza A virus replication and pathology in Tmprss2 knock-out mice.

    Lambertz, Ruth L O; Pippel, Jan; Gerhauser, Ingo; Kollmus, Heike; Anhlan, Darisuren; Hrincius, Eike R; Krausze, Joern; Kühn, Nora; Schughart, Klaus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-01)
    The haemagglutinin (HA) of H1N1 and H3N2 influenza A virus (IAV) subtypes has to be activated by host proteases. Previous studies showed that H1N1 virus cannot replicate efficiently in Tmprss2/ knock-out mice whereas H3N2 viruses are able to replicate to the same levels in Tmprss2/ as in wild type (WT) mice. Here, we investigated the sequence requirements for the HA molecule that allow IAV to replicate efficiently in the absence of TMPRSS2. We showed that replacement of the H3 for the H1-loop sequence (amino acids 320 to 329, at the C-terminus of HA1) was not sufficient for equal levels of virus replication or severe pathology in Tmprss2/ knock-out mice compared to WT mice. However, exchange of a distant amino acid from H1 to H3 sequence (E31D) in addition to the HA-loop substitution resulted in virus replication in Tmprss2/ knockout mice that was comparable to WT mice. The higher virus replication and lung damage was associated with increased epithelial damage and higher mortality. Our results provide further evidence and insights into host proteases as a promising target for therapeutic intervention of IAV infections.
  • TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1.

    Zmora, Pawel; Hoffmann, Markus; Kollmus, Heike; Moldenhauer, Anna-Sophie; Danov, Olga; Braun, Armin; Winkler, Michael; Schughart, Klaus; Pöhlmann, Stefan; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-07)
    The influenza virus hemagglutinin (HA) facilitates viral entry into target cells. Cleavage of HA by host cell proteases is essential for viral infectivity, and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease (TTSP) TMPRSS2 has been identified as an HA activator in cell culture and in the infected host. However, it is less clear whether TMPRSS2-related enzymes can also activate HA for spread in target cells. Moreover, the activity of cellular serine protease inhibitors against HA-activating TTSPs is poorly understood. Here, we show that TMPRSS11A, another member of the TTSP family, cleaves and activates the influenza A virus (FLUAV) HA and the Middle East respiratory syndrome coronavirus spike protein (MERS-S). Moreover, we demonstrate that TMPRSS11A is expressed in murine tracheal epithelium, which is a target of FLUAV infection, and in human trachea, suggesting that the protease could support FLUAV spread in patients. Finally, we show that HA activation by the TMPRSS11A-related enzymes human airway tryptase and DESC1, but not TMPRSS11A itself, is blocked by the cellular serine protease inhibitor hepatocyte growth factor activator inhibitor type-1 (HAI-1). Our results suggest that TMPRSS11A could promote FLUAV spread in target cells and that HA-activating TTSPs exhibit differential sensitivity to blockade by cellular serine protease inhibitors.
  • Crystal Structures of R-Type Bacteriocin Sheath and Tube Proteins CD1363 and CD1364 From in the Pre-assembled State.

    Schwemmlein, Nina; Pippel, Jan; Gazdag, Emerich-Mihai; Blankenfeldt, Wulf (2018-01-01)
    iffocins are high-molecular-weight phage tail-like bacteriocins (PTLBs) that some Clostridium difficile strains produce in response to SOS induction. Similar to the related R-type pyocins from Pseudomonas aeruginosa, R-type diffocins act as molecular puncture devices that specifically penetrate the cell envelope of other C. difficile strains to dissipate the membrane potential and kill the attacked bacterium. Thus, R-type diffocins constitute potential therapeutic agents to counter C. difficile-associated infections. PTLBs consist of rigid and contractile protein complexes. They are composed of a baseplate, receptor-binding tail fibers and an inner needle-like tube surrounded by a contractile sheath. In the mature particle, the sheath and tube structure form a complex network comprising up to 200 copies of a sheath and a tube protein each. Here, we report the crystal structures together with small angle X-ray scattering data of the sheath and tube proteins CD1363 (39 kDa) and CD1364 (16 kDa) from C. difficile strain CD630 in a monomeric pre-assembly form at 1.9 and 1.5 Å resolution, respectively. The tube protein CD1364 displays a compact fold and shares highest structural similarity with a tube protein from Bacillus subtilis but is remarkably different from that of the R-type pyocin from P. aeruginosa. The structure of the R-type diffocin sheath protein, on the other hand, is highly conserved. It contains two domains, whereas related members such as bacteriophage tail sheath proteins comprise up to four, indicating that R-type PTLBs may represent the minimal protein required for formation of a complete sheath structure. Comparison of CD1363 and CD1364 with structures of PTLBs and related assemblies suggests that several conformational changes are required to form complete assemblies. In the sheath, rearrangement of the flexible N- and C-terminus enables extensive interactions between the other subunits, whereas for the tube, such contacts are primarily established by mobile α-helices. Together, our results combined with information from structures of homologous assemblies allow constructing a preliminary model of the sheath and tube assembly from R-type diffocin.
  • Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products.

    Guttenberger, Nikolaus; Blankenfeldt, Wulf; Breinbauer, Rolf; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-11-15)
    Phenazines are natural products which are produced by bacteria or by archaeal Methanosarcina species. The tricyclic ring system enables redox processes, which producing organisms use for oxidation of NADH or for the generation of reactive oxygen species (ROS), giving them advantages over other microorganisms. In this review we summarize the progress in the field since 2005 regarding the isolation of new phenazine natural products, new insights in their biological function, and particularly the now almost completely understood biosynthesis. The review is complemented by a description of new synthetic methods and total syntheses of phenazines.
  • Single domain antibodies for the knockdown of cytosolic and nuclear proteins.

    Böldicke, Thomas; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-05-01)
    Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.
  • Biosynthesis of Violacein, Structure and Function of l-Tryptophan Oxidase VioA from Chromobacterium violaceum.

    Füller, Janis J; Röpke, René; Krausze, Joern; Rennhack, Kim E; Daniel, Nils P; Blankenfeldt, Wulf; Schulz, Stefan; Jahn, Dieter; Moser, Jürgen; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
    Violacein is a natural purple pigment of Chromobacterium violaceum with potential medical applications as antimicrobial, antiviral, and anticancer drugs. The initial step of violacein biosynthesis is the oxidative conversion of l-tryptophan into the corresponding α-imine catalyzed by the flavoenzyme l-tryptophan oxidase (VioA). A substrate-related (3-(1H-indol-3-yl)-2-methylpropanoic acid) and a product-related (2-(1H-indol-3-ylmethyl)prop-2-enoic acid) competitive VioA inhibitor was synthesized for subsequent kinetic and x-ray crystallographic investigations. Structures of the binary VioA·FADH2 and of the ternary VioA·FADH2·2-(1H-indol-3-ylmethyl)prop-2-enoic acid complex were resolved. VioA forms a "loosely associated" homodimer as indicated by small-angle x-ray scattering experiments. VioA belongs to the glutathione reductase family 2 of FAD-dependent oxidoreductases according to the structurally conserved cofactor binding domain. The substrate-binding domain of VioA is mainly responsible for the specific recognition of l-tryptophan. Other canonical amino acids were efficiently discriminated with a minor conversion of l-phenylalanine. Furthermore, 7-aza-tryptophan, 1-methyl-tryptophan, 5-methyl-tryptophan, and 5-fluoro-tryptophan were efficient substrates of VioA. The ternary product-related VioA structure indicated involvement of protein domain movement during enzyme catalysis. Extensive structure-based mutagenesis in combination with enzyme kinetics (using l-tryptophan and substrate analogs) identified Arg(64), Lys(269), and Tyr(309) as key catalytic residues of VioA. An increased enzyme activity of protein variant H163A in the presence of l-phenylalanine indicated a functional role of His(163) in substrate binding. The combined structural and mutational analyses lead to the detailed understanding of VioA substrate recognition. Related strategies for the in vivo synthesis of novel violacein derivatives are discussed.
  • Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity.

    Lukat, Peer; Katsuyama, Yohei; Wenzel, Silke; Binz, Tina; König, Claudia; Blankenfeldt, Wulf; Brönstrup, Mark; Müller, Rolf; Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-11-01)
    Griselimycins (GMs) are depsidecapeptides with superb anti-tuberculosis activity. They contain up to three (2S,4R)-4-methyl-prolines (4-MePro), of which one blocks oxidative degradation and increases metabolic stability in animal models. The natural congener with this substitution is only a minor component in fermentation cultures. We showed that this product can be significantly increased by feeding the reaction with 4-MePro and we investigated the molecular basis of 4-MePro biosynthesis and incorporation. We identified the GM biosynthetic gene cluster as encoding a nonribosomal peptide synthetase and a sub-operon for 4-MePro formation. Using heterologous expression, gene inactivation, and in vitro experiments, we showed that 4-MePro is generated by leucine hydroxylation, oxidation to an aldehyde, and ring closure with subsequent reduction. The crystal structures of the leucine hydroxylase GriE have been determined in complex with substrates and products, providing insight into the stereospecificity of the reaction.
  • ER-targeted intrabodies mediating specific in vivo knockdown of transitory proteins in comparison to RNAi

    Backhaus, Oliver; Böldicke, Thomas; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-10-25)
    In animals and mammalian cells, protein function can be analyzed by nucleotide sequence-based methods such as gene knockout, targeted gene disruption, CRISPR/Cas, TALEN, zinc finger nucleases, or the RNAi technique. Alternatively, protein knockdown approaches are available based on direct interference of the target protein with the inhibitor.Among protein knockdown techniques, the endoplasmic reticulum (ER) intrabodies arepotent molecules for protein knockdown in vitro and in vivo. These molecules are increasingly used for protein knockdown in living cells and transgenic mice. ER intrabody knockdown technique is based on the retention of membrane proteins and secretory proteins inside the ER, mediated by recombinant antibody fragments. In contrast to nucleotide sequence-based methods, the intrabody-mediated knockdown actsonly on the posttranslational level. In this review, the ER intrabody technology has been compared with the RNAi technique on the molecular level. The generation of intrabodies and RNAi has also been discussed. Specificity and off-target effects (OTE) of these molecules as well as the therapeutic potential of ER intrabodies and RNAi have been compared.
  • Characterization and structural determination of a new anti-MET function-blocking antibody with binding epitope distinct from the ligand binding domain.

    DiCara, Danielle M; Chirgadze, Dimitri Y; Pope, Anthony R; Karatt-Vellatt, Aneesh; Winter, Anja; Slavny, Peter; van den Heuvel, Joop; Parthiban, Kothai; Holland, Jane; Packman, Len C; Mavria, Georgia; Hoffmann, Jens; Birchmeier, Walter; Gherardi, Ermanno; McCafferty, John; Helmholtz-Zentrum für Infektionsforschung GmbH. Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-21)
    The growth and motility factor Hepatocyte Growth Factor/Scatter Factor (HGF/SF) and its receptor, the product of the MET proto-oncogene, promote invasion and metastasis of tumor cells and have been considered potential targets for cancer therapy. We generated a new Met-blocking antibody which binds outside the ligand-binding site, and determined the crystal structure of the Fab in complex with its target, which identifies the binding site as the Met Ig1 domain. The antibody, 107_A07, inhibited HGF/SF-induced cell migration and proliferation in vitro and inhibited growth of tumor xenografts in vivo. In biochemical assays, 107_A07 competes with both HGF/SF and its truncated splice variant NK1 for MET binding, despite the location of the antibody epitope on a domain (Ig1) not reported to bind NK1 or HGF/SF. Overlay of the Fab-MET crystal structure with the InternalinB-MET crystal structure shows that the 107_A07 Fab comes into close proximity with the HGF/SF-binding SEMA domain when MET is in the "compact", InternalinB-bound conformation, but not when MET is in the "open" conformation. These findings provide further support for the importance of the "compact" conformation of the MET extracellular domain, and the relevance of this conformation to HGF/SF binding and signaling.
  • Structural, mechanistic and functional insight into gliotoxin bis-thiomethylation in Aspergillus fumigatus.

    Dolan, Stephen K; Bock, Tobias; Hering, Vanessa; Owens, Rebecca A; Jones, Gary W; Blankenfeldt, Wulf; Doyle, Sean; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02)
    Gliotoxin is an epipolythiodioxopiperazine (ETP) class toxin, contains a disulfide bridge that mediates its toxic effects via redox cycling and is produced by the opportunistic fungal pathogen Aspergillus fumigatus Self-resistance against gliotoxin is effected by the gliotoxin oxidase GliT, and attenuation of gliotoxin biosynthesis is catalysed by gliotoxin S-methyltransferase GtmA. Here we describe the X-ray crystal structures of GtmA-apo (1.66 Å), GtmA complexed to S-adenosylhomocysteine (1.33 Å) and GtmA complexed to S-adenosylmethionine (2.28 Å), providing mechanistic insights into this important biotransformation. We further reveal that simultaneous elimination of the ability of A. fumigatus to dissipate highly reactive dithiol gliotoxin, via deletion of GliT and GtmA, results in the most significant hypersensitivity to exogenous gliotoxin observed to date. Indeed, quantitative proteomic analysis of ΔgliT::ΔgtmA reveals an uncontrolled over-activation of the gli-cluster upon gliotoxin exposure. The data presented herein reveal, for the first time, the extreme risk associated with intracellular dithiol gliotoxin biosynthesis-in the absence of an efficient dismutation capacity. Significantly, a previously concealed protective role for GtmA and functionality of ETP bis-thiomethylation as an ancestral protection strategy against dithiol compounds is now evident.
  • Mechanisms and Specificity of Phenazine Biosynthesis Protein PhzF.

    Diederich, Christina; Leypold, Mario; Culka, Martin; Weber, Hansjörg; Breinbauer, Rolf; Ullmann, G Matthias; Blankenfeldt, Wulf; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-24)
    Phenazines are bacterial virulence and survival factors with important roles in infectious disease. PhzF catalyzes a key reaction in their biosynthesis by isomerizing (2 S,3 S)-2,3-dihydro-3-hydroxy anthranilate (DHHA) in two steps, a [1,5]-hydrogen shift followed by tautomerization to an aminoketone. While the [1,5]-hydrogen shift requires the conserved glutamate E45, suggesting acid/base catalysis, it also shows hallmarks of a sigmatropic rearrangement, namely the suprafacial migration of a non-acidic proton. To discriminate these mechanistic alternatives, we employed enzyme kinetic measurements and computational methods. Quantum mechanics/molecular mechanics (QM/MM) calculations revealed that the activation barrier of a proton shuttle mechanism involving E45 is significantly lower than that of a sigmatropic [1,5]-hydrogen shift. QM/MM also predicted a large kinetic isotope effect, which was indeed observed with deuterated substrate. For the tautomerization, QM/MM calculations suggested involvement of E45 and an active site water molecule, explaining the observed stereochemistry. Because these findings imply that PhzF can act only on a limited substrate spectrum, we also investigated the turnover of DHHA derivatives, of which only O-methyl and O-ethyl DHHA were converted. Together, these data reveal how PhzF orchestrates a water-free with a water-dependent step. Its unique mechanism, specificity and essential role in phenazine biosynthesis may offer opportunities for inhibitor development.
  • Intrabodies against the Polysialyltransferases ST8SiaII and ST8SiaIV inhibit Polysialylation of NCAM in rhabdomyosarcoma tumor cells.

    Somplatzki, Stefan; Mühlenhoff, Martina; Kröger, Andrea; Gerardy-Schahn, Rita; Böldicke, Thomas; Helmholtz Centr for infection research (2017-05-12)
    Polysialic acid (polySia) is a carbohydrate modification of the neural cell adhesion molecule (NCAM), which is implicated in neural differentiation and plays an important role in tumor development and metastasis. Polysialylation of NCAM is mediated by two Golgi-resident polysialyltransferases (polyST) ST8SiaII and ST8SiaIV. Intracellular antibodies (intrabodies; IB) expressed inside the ER and retaining proteins passing the ER such as cell surface receptors or secretory proteins provide an efficient means of protein knockdown. To inhibit the function of ST8SiaII and ST8SiaIV specific ER IBs were generated starting from two corresponding hybridoma clones. Both IBs αST8SiaII-IB and αST8SiaIV-IB were constructed in the scFv format and their functions characterized in vitro and in vivo.
  • Crystal Structure of the HMG-CoA Synthase MvaS from the Gram-Negative Bacterium Myxococcus xanthus.

    Bock, Tobias; Kasten, Janin; Müller, Rolf; Blankenfeldt, Wulf; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-07-01)
    A critical step in bacterial isoprenoid production is the synthesis of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) catalyzed by HMG-CoA synthase (HMGCS). In myxobacteria, this enzyme is also involved in a recently discovered alternative and acetyl-CoA-dependent isovaleryl CoA biosynthesis pathway. Here we present crystal structures of MvaS, the HMGCS from Myxococcus xanthus, in complex with CoA and acetylated active site Cys115, with the second substrate acetoacetyl CoA and with the product of the condensation reaction, 3-hydroxy-3-methylglutaryl CoA. With these structures, we show that MvaS uses the common HMGCS enzymatic mechanism and provide evidence that dimerization plays a role in the formation and stability of the active site. Overall, MvaS shows features typical of the eukaryotic HMGCS and exhibits differences from homologues from Gram-positive bacteria. This study provides insights into myxobacterial alternative isovaleryl CoA biosynthesis and thereby extends the toolbox for the biotechnological production of renewable fuel and chemicals.
  • Crystal structure of the conserved domain of the DC lysosomal associated membrane protein: implications for the lysosomal glycocalyx

    Wilke, Sonja; Krausze, Joern; Büssow, Konrad (2012-07-19)
    Abstract Background The family of lysosome-associated membrane proteins (LAMP) comprises the multifunctional, ubiquitous LAMP-1 and LAMP-2, and the cell type-specific proteins DC-LAMP (LAMP-3), BAD-LAMP (UNC-46, C20orf103) and macrosialin (CD68). LAMPs have been implicated in a multitude of cellular processes, including phagocytosis, autophagy, lipid transport and aging. LAMP-2 isoform A acts as a receptor in chaperone-mediated autophagy. LAMP-2 deficiency causes the fatal Danon disease. The abundant proteins LAMP-1 and LAMP-2 are major constituents of the glycoconjugate coat present on the inside of the lysosomal membrane, the 'lysosomal glycocalyx'. The LAMP family is characterized by a conserved domain of 150 to 200 amino acids with two disulfide bonds. Results The crystal structure of the conserved domain of human DC-LAMP was solved. It is the first high-resolution structure of a heavily glycosylated lysosomal membrane protein. The structure represents a novel β-prism fold formed by two β-sheets bent by β-bulges and connected by a disulfide bond. Flexible loops and a hydrophobic pocket represent possible sites of molecular interaction. Computational models of the glycosylated luminal regions of LAMP-1 and LAMP-2 indicate that the proteins adopt a compact conformation in close proximity to the lysosomal membrane. The models correspond to the thickness of the lysosomal glycoprotein coat of only 5 to 12 nm, according to electron microscopy. Conclusion The conserved luminal domain of lysosome-associated membrane proteins forms a previously unknown β-prism fold. Insights into the structure of the lysosomal glycoprotein coat were obtained by computational models of the LAMP-1 and LAMP-2 luminal regions.
  • High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells

    Jäger, Volker; Büssow, Konrad; Wagner, Andreas; Weber, Susanne; Hust, Michael; Frenzel, André; Schirrmann, Thomas (2013-06-26)
    Abstract Background The demand of monospecific high affinity binding reagents, particularly monoclonal antibodies, has been steadily increasing over the last years. Enhanced throughput of antibody generation has been addressed by optimizing in vitro selection using phage display which moved the major bottleneck to the production and purification of recombinant antibodies in an end-user friendly format. Single chain (sc)Fv antibody fragments require additional tags for detection and are not as suitable as immunoglobulins (Ig)G in many immunoassays. In contrast, the bivalent scFv-Fc antibody format shares many properties with IgG and has a very high application compatibility. Results In this study transient expression of scFv-Fc antibodies in human embryonic kidney (HEK) 293 cells was optimized. Production levels of 10-20 mg/L scFv-Fc antibody were achieved in adherent HEK293T cells. Employment of HEK293-6E suspension cells expressing a truncated variant of the Epstein Barr virus (EBV) nuclear antigen (EBNA) 1 in combination with production under serum free conditions increased the volumetric yield up to 10-fold to more than 140 mg/L scFv-Fc antibody. After vector optimization and process optimization the yield of an scFv-Fc antibody and a cytotoxic antibody-RNase fusion protein further increased 3-4-fold to more than 450 mg/L. Finally, an entirely new mammalian expression vector was constructed for single step in frame cloning of scFv genes from antibody phage display libraries. Transient expression of more than 20 different scFv-Fc antibodies resulted in volumetric yields of up to 600 mg/L and 400 mg/L in average. Conclusion Transient production of recombinant scFv-Fc antibodies in HEK293-6E in combination with optimized vectors and fed batch shake flasks cultivation is efficient and robust, and integrates well into a high-throughput recombinant antibody generation pipeline.
  • Side effects of chaperone gene co-expression in recombinant protein production

    Martínez-Alonso, Mónica; García-Fruitós, Elena; Ferrer-Miralles, Neus; Rinas, Ursula; Villaverde, Antonio (2010-09-02)
    Abstract Insufficient availability of molecular chaperones is observed as a major bottleneck for proper protein folding in recombinant protein production. Therefore, co-production of selected sets of cell chaperones along with foreign polypeptides is a common approach to increase the yield of properly folded, recombinant proteins in bacterial cell factories. However, unbalanced amounts of folding modulators handling folding-reluctant protein species might instead trigger undesired proteolytic activities, detrimental regarding recombinant protein stability, quality and yield. This minireview summarizes the most recent observations of chaperone-linked negative side effects, mostly focusing on DnaK and GroEL sets, when using these proteins as folding assistant agents. These events are discussed in the context of the complexity of the cell quality network and the consequent intricacy of the physiological responses triggered by protein misfolding.
  • The AibR-isovaleryl coenzyme A regulator and its DNA binding site - a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus.

    Bock, Tobias; Volz, Carsten; Hering, Vanessa; Scrima, Andrea; Müller, Rolf; Blankenfeldt, Wulf; Hel,holtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-12-09)
    Isovaleryl coenzyme A (IV-CoA) is an important building block of iso-fatty acids. In myxobacteria, IV-CoA is essential for the formation of signaling molecules involved in fruiting body formation. Leucine degradation is the common source of IV-CoA, but a second, de novo biosynthetic route to IV-CoA termed AIB (alternative IV-CoA biosynthesis) was recently discovered in M. xanthus The AIB-operon contains the TetR-like transcriptional regulator AibR, which we characterize in this study. We demonstrate that IV-CoA binds AibR with micromolar affinity and show by gelshift experiments that AibR interacts with the promoter region of the AIB-operon once IV-CoA is present. We identify an 18-bp near-perfect palindromic repeat as containing the AibR operator and provide evidence that AibR also controls an additional genomic locus coding for a putative acetyl-CoA acetyltransferase. To elucidate atomic details, we determined crystal structures of AibR in the apo, the IV-CoA- and the IV-CoA-DNA-bound state to 1.7 Å, 2.35 Å and 2.92 Å, respectively. IV-CoA induces partial unfolding of an α-helix, which allows sequence-specific interactions between AibR and its operator. This study provides insights into AibR-mediated regulation and shows that AibR functions in an unusual TetR-like manner by blocking transcription not in the ligand-free but in the effector-bound state.

View more