• xCELLanalyzer: A Framework for the Analysis of Cellular Impedance Measurements for Mode of Action Discovery

      Franke, Raimo; Hinkelmann, Bettina; Fetz, Verena; Stradal, Theresia; Sasse, Florenz; Klawonn, Frank; Brönstrup, Mark; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Sage, 2019-01-25)
      Mode of action (MoA) identification of bioactive compounds is very often a challenging and time-consuming task. We used a label-free kinetic profiling method based on an impedance readout to monitor the time-dependent cellular response profiles for the interaction of bioactive natural products and other small molecules with mammalian cells. Such approaches have been rarely used so far due to the lack of data mining tools to properly capture the characteristics of the impedance curves. We developed a data analysis pipeline for the xCELLigence Real-Time Cell Analysis detection platform to process the data, assess and score their reproducibility, and provide rank-based MoA predictions for a reference set of 60 bioactive compounds. The method can reveal additional, previously unknown targets, as exemplified by the identification of tubulin-destabilizing activities of the RNA synthesis inhibitor actinomycin D and the effects on DNA replication of vioprolide A. The data analysis pipeline is based on the statistical programming language R and is available to the scientific community through a GitHub repository.
    • Metabolome and transcriptome-wide effects of the carbon storage regulator A in enteropathogenic Escherichia coli.

      Berndt, Volker; Beckstette, Michael; Volk, Marcel; Dersch, Petra; Brönstrup, Mark; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-01-15)
      The carbon storage regulator A (CsrA) is a conserved global regulatory system known to control central carbon pathways, biofilm formation, motility, and pathogenicity. The aim of this study was to characterize changes in major metabolic pathways induced by CsrA in human enteropathogenic Escherichia coli (EPEC) grown under virulence factor-inducing conditions. For this purpose, the metabolomes and transcriptomes of EPEC and an isogenic ∆csrA mutant derivative were analyzed by untargeted mass spectrometry and RNA sequencing, respectively. Of the 159 metabolites identified from untargeted GC/MS and LC/MS data, 97 were significantly (fold change ≥ 1.5; corrected p-value ≤ 0.05) regulated between the knockout and the wildtype strain. A lack of csrA led to an accumulation of fructose-6-phosphate (F6P) and glycogen synthesis pathway products, whereas metabolites in lower glycolysis and the citric acid cycle were downregulated. Associated pathways from the citric acid cycle like aromatic amino acid and siderophore biosynthesis were also negatively influenced. The nucleoside salvage pathways were featured by an accumulation of nucleosides and nucleobases, and a downregulation of nucleotides. In addition, a pronounced downregulation of lyso-lipid metabolites was observed. A drastic change in the morphology in the form of vesicle-like structures of the ∆csrA knockout strain was visible by electron microscopy. Colanic acid synthesis genes were strongly (up to 50 fold) upregulated, and the abundance of colanic acid was 3 fold increased according to a colorimetric assay. The findings expand the scope of pathways affected by the csrA regulon and emphasize its importance as a global regulator.
    • Identification and quantification of (t)RNA modifications in Pseudomonas aeruginosa by liquid chromatography-tandem mass spectrometry.

      Grobe, Svenja; Doberenz, Sebastian; Ferreira, Kevin; Krueger, Jonas; Brönstrup, Mark; Kaever, Volkhard; Häußler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-Blackwell, 2019-01-15)
      Transfer RNA (tRNA) modifications impact the structure and function of tRNAs thus affecting the efficiency and fidelity of translation. In the opportunistic pathogen Pseudomonas aeruginosa translational regulation plays an important but less defined role in the adaptation to changing environments. In this study, we explored tRNA modifications in P. aeruginosa using LC-MS/MS based approaches. Neutral Loss Scan (NLS) demonstrated the potential to identify previously unknown modifications, while Multiple Reaction Monitoring (MRM) can detect modifications with high specificity and sensitivity. In this study, the MRM-based external calibration method allowed for quantification of the 4 canonical and 32 modified ribonucleosides, of which 21 tRNA modifications were quantified in the total tRNA pool of P. aeruginosa PA14. We also purified the single tRNA isoacceptors tRNA-ArgUCU, tRNA-LeuCAA and tRNA-TrpCCA and determined, both qualitatively and quantitatively, their specific modification pattern. Deeper insights into the nature and dynamics of tRNA modifications in P. aeruginosa will pave the way for further studies on posttranscriptional gene regulation as a relatively unexplored molecular mechanism of controlling bacterial pathogenicity and life style.
    • Advances and Challenges of Biodegradable Implant Materials with a Focus on Magnesium-Alloys and Bacterial Infections

      Rahim, Muhammad; Ullah, Sami; Mueller, Peter; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MDPI, 2018-07-10)
      Medical implants made of biodegradable materials could be advantageous for temporary applications, such as mechanical support during bone-healing or as vascular stents to keep blood vessels open. After completion of the healing process, the implant would disappear, avoiding long-term side effects or the need for surgical removal. Various corrodible metal alloys based on magnesium, iron or zinc have been proposed as sturdier and potentially less inflammatory alternatives to degradable organic polymers, in particular for load-bearing applications. Despite the recent introduction of magnesium-based screws, the remaining hurdles to routine clinical applications are still challenging. These include limitations such as mechanical material characteristics or unsuitable corrosion characteristics. In this article, the salient features and clinical prospects of currently-investigated biodegradable implant materials are summarized, with a main focus on magnesium alloys. A mechanism of action for the stimulation of bone growth due to the exertion of mechanical force by magnesium corrosion products is discussed. To explain divergent in vitro and in vivo effects of magnesium, a novel model for bacterial biofilm infections is proposed which predicts crucial consequences for antibacterial implant strategies.
    • Occupation-Associated Fatal Limbic Encephalitis Caused by Variegated Squirrel Bornavirus 1, Germany, 2013.

      Tappe, Dennis; Schlottau, Kore; Cadar, Daniel; Hoffmann, Bernd; Balke, Lorenz; Bewig, Burkhard; Hoffmann, Donata; Eisermann, Philip; Fickenscher, Helmut; Krumbholz, Andi; Laufs, Helmut; Huhndorf, Monika; Rosenthal, Maria; Schulz-Schaeffer, Walter; Ismer, Gabriele; Hotop, Sven-Kevin; Brönstrup, Mark; Ott, Anthonina; Schmidt-Chanasit, Jonas; Beer, Martin; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-01)
      Limbic encephalitis is commonly regarded as an autoimmune-mediated disease. However, after the recent detection of zoonotic variegated squirrel bornavirus 1 in a Prevost's squirrel (Callosciurus prevostii) in a zoo in northern Germany, we retrospectively investigated a fatal case in an autoantibody-seronegative animal caretaker who had worked at that zoo. The virus had been discovered in 2015 as the cause of a cluster of cases of fatal encephalitis among breeders of variegated squirrels (Sciurus variegatoides) in eastern Germany. Molecular assays and immunohistochemistry detected a limbic distribution of the virus in brain tissue of the animal caretaker. Phylogenetic analyses demonstrated a spillover infection from the Prevost's squirrel. Antibodies against bornaviruses were detected in the patient's cerebrospinal fluid by immunofluorescence and newly developed ELISAs and immunoblot. The putative antigenic epitope was identified on the viral nucleoprotein. Other zoo workers were not infected; however, avoidance of direct contact with exotic squirrels and screening of squirrels are recommended.
    • Detection and Investigation of Eagle Effect Resistance to Vancomycin in With an ATP-Bioluminescence Assay.

      Jarrad, Angie M; Blaskovich, Mark A T; Prasetyoputri, Anggia; Karoli, Tomislav; Hansford, Karl A; Cooper, Matthew A; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      Vancomycin was bactericidal against Clostridium difficile at eightfold the minimum inhibitory concentration (MIC) using a traditional minimum bactericidal concentration (MBC) assay. However, at higher concentrations up to 64 × MIC, vancomycin displayed a paradoxical “more-drug-kills-less” Eagle effect against C. difficile. To overcome challenges associated with performing the labor-intensive agar-based MBC method under anaerobic growth conditions, we investigated an alternative more convenient ATP-bioluminescence assay to assess the Eagle effect in C. difficile. The commercial BacTiter-GloTM assay is a homogenous method to determine bacterial viability based on quantification of bacterial ATP as a marker for metabolic activity. The ATP-bioluminescence assay was advantageous over the traditional MBC-type assay in detecting the Eagle effect because it reduced assay time and was simple to perform; measurement of viability could be performed in less than 10 min outside of the anaerobic chamber. Using this method, we found C. difficile survived clinically relevant, high concentrations of vancomycin (up to 2048 μg/mL). In contrast, C. difficile did not survive high concentrations of metronidazole or fidaxomicin. The Eagle effect was also detected for telavancin, but not for teicoplanin, dalbavancin, oritavancin, or ramoplanin. All four pathogenic strains of C. difficile tested consistently displayed Eagle effect resistance to vancomycin, but not metronidazole or fidaxomicin. These results suggest that Eagle effect resistance to vancomycin in C. difficile could be more prevalent than previously appreciated, with potential clinical implications. The ATP-Bioluminescence assay can thus be used as an alternative to the agar-based MBC assay to characterize the Eagle effect against a variety of antibiotics, at a wide-range of concentrations, with much greater throughput. This may facilitate improved understanding of Eagle effect resistance and promote further research to understand potential clinical relevance.
    • Investigations on the mode of action of gephyronic acid, an inhibitor of eukaryotic protein translation from myxobacteria.

      Muthukumar, Yazh; Münkemer, Johanna; Mathieu, Daniel; Richter, Christian; Schwalbe, Harald; Steinmetz, Heinrich; Kessler, Wolfgang; Reichelt, Joachim; Beutling, Ulrike; Frank, Ronald; Büssow, Konrad; van den Heuvel, Joop; Brönstrup, Mark; Taylor, Richard E; Laschat, Sabine; Sasse, Florenz (PLOS, 2018-01-01)
      The identification of inhibitors of eukaryotic protein biosynthesis, which are targeting single translation factors, is highly demanded. Here we report on a small molecule inhibitor, gephyronic acid, isolated from the myxobacterium Archangium gephyra that inhibits growth of transformed mammalian cell lines in the nM range. In direct comparison, primary human fibroblasts were shown to be less sensitive to toxic effects of gephyronic acid than cancer-derived cells. Gephyronic acid is targeting the protein translation system. Experiments with IRES dual luciferase reporter assays identified it as an inhibitor of the translation initiation. DARTs approaches, co-localization studies and pull-down assays indicate that the binding partner could be the eukaryotic initiation factor 2 subunit alpha (eIF2α). Gephyronic acid seems to have a different mode of action than the structurally related polyketides tedanolide, myriaporone, and pederin and is a valuable tool for investigating the eukaryotic translation system. Because cancer derived cells were found to be especially sensitive, gephyronic acid could potentially find use as a drug candidate.
    • Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity.

      Lukat, Peer; Katsuyama, Yohei; Wenzel, Silke; Binz, Tina; König, Claudia; Blankenfeldt, Wulf; Brönstrup, Mark; Müller, Rolf; Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-11-01)
      Griselimycins (GMs) are depsidecapeptides with superb anti-tuberculosis activity. They contain up to three (2S,4R)-4-methyl-prolines (4-MePro), of which one blocks oxidative degradation and increases metabolic stability in animal models. The natural congener with this substitution is only a minor component in fermentation cultures. We showed that this product can be significantly increased by feeding the reaction with 4-MePro and we investigated the molecular basis of 4-MePro biosynthesis and incorporation. We identified the GM biosynthetic gene cluster as encoding a nonribosomal peptide synthetase and a sub-operon for 4-MePro formation. Using heterologous expression, gene inactivation, and in vitro experiments, we showed that 4-MePro is generated by leucine hydroxylation, oxidation to an aldehyde, and ring closure with subsequent reduction. The crystal structures of the leucine hydroxylase GriE have been determined in complex with substrates and products, providing insight into the stereospecificity of the reaction.
    • The Kaposi's sarcoma-associated herpesvirus (KSHV) non-structural membrane protein K15 is required for viral lytic replication and may represent a therapeutic target.

      Abere, Bizunesh; Mamo, Tamrat M; Hartmann, Silke; Samarina, Naira; Hage, Elias; Rückert, Jessica; Hotop, Sven-Kevin; Büsche, Guntram; Schulz, Thomas F; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-09)
      Kaposi's sarcoma-associated herpesvirus (KSHV) is the infectious cause of the highly vascularized tumor Kaposi's sarcoma (KS), which is characterized by proliferating spindle cells of endothelial origin, extensive neo-angiogenesis and inflammatory infiltrates. The KSHV K15 protein contributes to the angiogenic and invasive properties of KSHV-infected endothelial cells. Here, we asked whether K15 could also play a role in KSHV lytic replication. Deletion of the K15 gene from the viral genome or its depletion by siRNA lead to reduced virus reactivation, as evidenced by the decreased expression levels of KSHV lytic proteins RTA, K-bZIP, ORF 45 and K8.1 as well as reduced release of infectious virus. Similar results were found for a K1 deletion virus. Deleting either K15 or K1 from the viral genome also compromised the ability of KSHV to activate PLCγ1, Erk1/2 and Akt1. In infected primary lymphatic endothelial (LEC-rKSHV) cells, which have previously been shown to spontaneously display a viral lytic transcription pattern, transfection of siRNA against K15, but not K1, abolished viral lytic replication as well as KSHV-induced spindle cell formation. Using a newly generated monoclonal antibody to K15, we found an abundant K15 protein expression in KS tumor biopsies obtained from HIV positive patients, emphasizing the physiological relevance of our findings. Finally, we used a dominant negative inhibitor of the K15-PLCγ1 interaction to establish proof of principle that pharmacological intervention with K15-dependent pathways may represent a novel approach to block KSHV reactivation and thereby its pathogenesis.
    • Use of Single-Frequency Impedance Spectroscopy to Characterize the Growth Dynamics of Biofilm Formation in Pseudomonas aeruginosa.

      van Duuren, Jozef B J H; Müsken, Mathias; Karge, Bianka; Tomasch, Jürgen; Wittmann, Christoph; Häussler, Susanne; Brönstrup, Mark (2017-07-12)
      Impedance spectroscopy has been applied in prokaryotic and eukaryotic cytometry as a label-free method for the investigation of adherent cells. In this paper, its use for characterizing the growth dynamics of P. aeruginosa biofilms is described and compared to crystal violet staining and confocal microscopy. The method allows monitoring the growth of biofilm-forming P. aeruginosa in a continuous and label-free manner over a period of 72 h in a 96 well plate format. Impedance curves obtained for P. aeruginosa PA14 wild type and mutant strains with a transposon insertion in pqsA and pelA genes exhibited distinct phases. We propose that the slope of the declining curve following a maximum at ca. 35-40 h is a measure of biofilm formation. Transplant experiments with P. aeruginosa biofilms and paraffin suggest that the impedance also reflects pellicle formation at the liquid-air interface, a barely considered contributor to impedance. Finally, the impairment of biofilm formation upon treatment of cultures with L-arginine and with ciprofloxacin, tobramycin and meropenem was studied by single frequency impedance spectroscopy. We suggest that these findings qualify impedance spectroscopy as an additional technique to characterize biofilm formation and its modulation by small molecule drugs.
    • Multivalent Siderophore-DOTAM Conjugates as Theranostics for Imaging and Treatment of Bacterial Infections.

      Ferreira, Kevin; Hu, Hai-Yu; Fetz, Verena; Prochnow, Hans; Rais, Bushra; Müller, Peter P; Brönstrup, Mark; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-07-03)
      There is a strong need to better diagnose infections at deep body sites through noninvasive molecular imaging methods. Herein, we describe the synthesis and characterization of probes based on siderophore conjugates with catechol moieties and a central DOTAM scaffold. The probes can accommodate a metal ion as well as an antibiotic moiety and are therefore suited for theranostic purposes. The translocation of the conjugates across the outer and inner cell membranes of E. coli was confirmed by growth recovery experiments with enterobactin-deficient strains, by the antibacterial activity of ampicillin conjugates, and by confocal imaging using a fluorogen-activating protein-malachite green system adapted to E. coli. The suitability of the probes for in vivo imaging was demonstrated with a Cy5.5 conjugate in mice infected with P. aeruginosa.
    • The myxobacterial metabolite Soraphen A inhibits HIV-1 by reducing virus production and altering virion composition.

      Fleta-Soriano, Eric; Smutná, Katarína; Martinez, Javier P; Lorca Oró, Cristina; Sadiq, S Kashif; Mirambeau, Gilles; Lopez-Iglesias, Carmen; Bosch, Marta; Pol, Albert; Brönstrup, Mark; Diez, Juana; Meyerhans, Andreas; Helmholtz Centre of infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-05-22)
      Soraphen A is a myxobacterial metabolite that blocks the acetyl-CoA carboxylase of the host, and was previously identified as a novel HIV inhibitor. Here we report that Soraphen A acts by reducing virus production and altering the gp120 virion content, impacting entry capacity and infectivity. These effects are partially reversed by addition of palmitic acid, suggesting inhibition of HIV Env palmitoylation as one of the mechanisms of antiviral action.
    • Characteristics, chemical compositions and biological activities of propolis from Al-Bahah, Saudi Arabia.

      Elnakady, Yasser A; Rushdi, Ahmed I; Franke, Raimo; Abutaha, Nael; Ebaid, Hossam; Baabbad, Mohannad; Omar, Mohamed O M; Al Ghamdi, Ahmad A; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02-06)
      Propolis has been used to treat several diseases since ancient times, and is an important source of bioactive natural compounds and drug derivatives. These properties have kept the interest of investigators around the world, leading to the investigation of the chemical and biological properties and application of propolis. In this report, the chemical constituents that are responsible for the anticancer activities of propolis were analyzed. The propolis was sourced from Al-Baha in the southern part of the Kingdom of Saudi Arabia. Standard protocols for chemical fractionation and bioactivity-guided chemical analysis were used to identify the bio-active ethyl acetate fraction. The extraction was performed in methanol and then analyzed by gas chromatography-mass spectrometry (GC-MS). The major compounds are triterpenoids, with a relative concentration of 74.0%; steroids, with a relative concentration of 9.8%; and diterpenoids, with a relative concentration of 7.9%. The biological activity was characterized using different approaches and cell-based assays. Propolis was found to inhibit the proliferation of cancer cells in a concentration-dependent manner through apoptosis. Immunofluorescence staining with anti-α-tubulin antibodies and cell cycle analysis indicated that tubulin and/or microtubules are the cellular targets of the L-acetate fraction. This study demonstrates the importance of Saudi propolis as anti-cancer drug candidates.
    • Olfaction, taste and chemoreception: scientific evidence replaces "Essays in biopoetry".

      Appendino, Giovanni; Brönstrup, Mark; Kubanek, Julia M; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
    • Differential magnesium implant corrosion coat formation and contribution to bone bonding.

      Rahim, Muhammad Imran; Weizbauer, Andreas; Evertz, Florian; Hoffmann, Andrea; Rohde, Manfred; Glasmacher, Birgit; Windhagen, Henning; Gross, Gerhard; Seitz, Jan-Marten; Mueller, Peter P; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
      Magnesium alloys are presently under investigation as promising biodegradable implant materials with osteoconductive properties. To study the molecular mechanisms involved, the potential contribution of soluble magnesium corrosion products to the stimulation of osteoblastic cell differentiation was examined. However, no evidence for the stimulation of osteoblast differentiation could be obtained when cultured mesenchymal precursor cells were differentiated in the presence of metallic magnesium or in cell culture medium containing elevated magnesium ion levels. Similarly, in soft tissue no bone induction by metallic magnesium or by the corrosion product magnesium hydroxide could be observed in a mouse model. Motivated by the comparatively rapid accumulation solid corrosion products physicochemical processes were examined as an alternative mechanism to explain the stimulation of bone growth by magnesium-based implants. During exposure to physiological solutions a structured corrosion coat formed on magnesium whereby the elements calcium and phosphate were enriched in the outermost layer which could play a role in the established biocompatible behavior of magnesium implants. When magnesium pins were inserted into avital bones, corrosion lead to increases in the pull out force, suggesting that the expanding corrosion layer was interlocking with the surrounding bone. Since mechanical stress is a well-established inducer of bone growth, volume increases caused by the rapid accumulation of corrosion products and the resulting force development could be a key mechanism and provide an explanation for the observed stimulatory effects of magnesium-based implants in hard tissue. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 697-709, 2017.
    • New Structural Templates for Clinically Validated and Novel Targets in Antimicrobial Drug Research and Development.

      Klahn, Philipp; Brönstrup, Mark; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-10-05)
      The development of bacterial resistance against current antibiotic drugs necessitates a continuous renewal of the arsenal of efficacious drugs. This imperative has not been met by the output of antibiotic research and development of the past decades for various reasons, including the declining efforts of large pharma companies in this area. Moreover, the majority of novel antibiotics are chemical derivatives of existing structures that represent mostly step innovations, implying that the available chemical space may be exhausted. This review negates this impression by showcasing recent achievements in lead finding and optimization of antibiotics that have novel or unexplored chemical structures. Not surprisingly, many of the novel structural templates like teixobactins, lysocin, griselimycin, or the albicidin/cystobactamid pair were discovered from natural sources. Additional compounds were obtained from the screening of synthetic libraries and chemical synthesis, including the gyrase-inhibiting NTBI's and spiropyrimidinetrione, the tarocin and targocil inhibitors of wall teichoic acid synthesis, or the boronates and diazabicyclo[3.2.1]octane as novel β-lactamase inhibitors. A motif that is common to most clinically validated antibiotics is that they address hotspots in complex biosynthetic machineries, whose functioning is essential for the bacterial cell. Therefore, an introduction to the biological targets-cell wall synthesis, topoisomerases, the DNA sliding clamp, and membrane-bound electron transport-is given for each of the leads presented here.
    • Coprinuslactone protects the edible mushroom Coprinus comatus against biofilm infections by blocking both quorum-sensing and MurA.

      de Carvalho, Maira P; Gulotta, Giuseppe; do Amaral, Matheus W; Lünsdorf, Heinrich; Sasse, Florenz; Abraham, Wolf-Rainer; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-10-03)
      Pathogens embedded in biofilms are involved in many infections and are very difficult to treat with antibiotics because of higher resistance compared to planktonic cells. Therefore, new approaches for their control are urgently needed. One way to search for biofilm dispersing compounds is to look at defense strategies of organisms exposed to wet environments, which makes them prone to biofilm infections. It is reasonable to assume that mushrooms have developed mechanisms to control biofilms on their sporocarps (fruiting bodies). A preliminary screening for biofilms on sporocarps revealed several species with few or no bacteria on their sporocarps. From the edible mushroom Coprinus comatus where no bacteria on the sporocarp could be detected (3R,4S)-2-methylene-3,4-dihydroxypentanoic acid 1,4-lactone, named coprinuslactone, was isolated. Coprinuslactone interfered with quorum-sensing and dispersed biofilms of Pseudomonas aeruginosa, where it also reduced the formation of the pathogenicity factors pyocyanin and rhamnolipid B. Coprinuslactone also damaged Staphylococcus aureus cells in biofilms at subtoxic concentrations. Furthermore, it inhibited UDP-N-acetylglucosamine enolpyruvyl transferase (MurA), essential for bacterial cell wall synthesis. These two modes of action ensure the inhibition of a broad spectrum of pathogens on the fruiting body but may also be useful for future clinical applications. This article is protected by copyright. All rights reserved.
    • Screening and characterization of molecules that modulate the biological activity of IFNs-I.

      Bürgi, Milagros; Zapol'skii, Viktor A; Hinkelmann, Bettina; Köster, Mario; Kaufmann, Dieter E; Sasse, Florenz; Hauser, Hansjörg; Etcheverrigaray, Marina; Kratje, Ricardo; Bollati-Fogolín, Mariela; Oggero, Marcos; Helmholtz Centre for infection research, Inhoffenstr. 7,38124 Braunschweig, Germany. (2016-09-10)
      Type I Interferons (IFNs-I) are species-specific glycoproteins which play an important role as primary defence against viral infections and that can also modulate the adaptive immune system. In some autoimmune diseases, interferons (IFNs) are over-produced. IFNs are widely used as biopharmaceuticals for a variety of cancer indications, chronic viral diseases, and for their immuno-modulatory action in patients with multiple sclerosis; therefore, increasing their therapeutic efficiency and decreasing their side effects is of high clinical value. In this sense, it is interesting to find molecules that can modulate the activity of IFNs. In order to achieve that, it was necessary to establish a simple, fast and robust assay to analyze numerous compounds simultaneously. We developed four reporter gene assays (RGAs) to identify IFN activity modulator compounds by using WISH-Mx2/EGFP, HeLa-Mx2/EGFP, A549-Mx2/EGFP, and HEp2-Mx2/EGFP reporter cell lines (RCLs). All of them present a Z' factor higher than 0.7. By using these RGAs, natural and synthetic compounds were analyzed simultaneously. A total of 442 compounds were studied by the Low Throughput Screening (LTS) assay using the four RCLs to discriminate between their inhibitory or enhancing effects on IFN activity. Some of them were characterized and 15 leads were identified. Finally, one promising candidate with enhancing effect on IFN-α/-β activity and five compounds with inhibitory effect were described.
    • Isolation, Co-Crystallization and Structure-Based Characterization of Anabaenopeptins as Highly Potent Inhibitors of Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa).

      Schreuder, Herman; Liesum, Alexander; Lönze, Petra; Stump, Heike; Hoffmann, Holger; Schiell, Matthias; Kurz, Michael; Toti, Luigi; Bauer, Armin; Kallus, Christopher; Klemke-Jahn, Christine; Czech, Jörg; Kramer, Dan; Enke, Heike; Niedermeyer, Timo H J; Morrison, Vincent; Kumar, Vasant; Brönstrup, Mark; Helmholtz Centre of infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-09-08)
      Mature thrombin activatable fibrinolysis inhibitor (TAFIa) is a carboxypeptidase that stabilizes fibrin clots by removing C-terminal arginines and lysines from partially degraded fibrin. Inhibition of TAFIa stimulates the degradation of fibrin clots and may help to prevent thrombosis. Applying a lead finding approach based on literature-mining, we discovered that anabaenopeptins, cyclic peptides produced by cyanobacteria, were potent inhibitors of TAFIa with IC50 values as low as 1.5 nM. We describe the isolation and structure elucidation of 20 anabaenopeptins, including 13 novel congeners, as well as their pronounced structure-activity relationships (SAR) with respect to inhibition of TAFIa. Crystal structures of the anabaenopeptins B, C and F bound to the surrogate protease carboxypeptidase B revealed the binding modes of these large (~850 Da) compounds in detail and explained the observed SAR, i.e. the strong dependence of the potency on a basic (Arg, Lys) exocyclic residue that addressed the S1' binding pocket, and a broad tolerance towards substitutions in the pentacyclic ring that acted as a plug of the active site.
    • Evaluation of the inflammatory potential of implant materials in a mouse model by bioluminescent imaging of intravenously injected bone marrow cells.

      Rais, Bushra; Köster, Mario; Rahim, Muhammad Imran; Pils, Marina; Seitz, Jan-Marten; Hauser, Hansjörg; Wirth, Dagmar; Mueller, Peter P; Helmholtz Centre for infection research, Inhoffenstr. 7,38124 Braunschweig, Germany. (2016-09)
      To evaluate the inflammatory potential of implants a bioluminescent imaging assay was developed using luciferase-expressing bone marrow cells that were injected into the blood circulation of wild-type mice. After subcutaneous implantation of titanium discs as an example for a clinically established biocompatible material, the luminosity was modest. Similarly, low luminosity signals were generated by pure magnesium implants that were used to represent metallic alloys that are presently under investigation as novel degradable implant materials. Increased luminosity was observed in response to degradable polymeric PLGA implants. Surgical wounds induced a basic luminescent response even in the absence of an implant. However, the material-independent response to injury could be minimized using injectable microparticle suspensions. In parallel with the resorption of biodegradable microparticles, the signal induced by PLGA declined faster when compared to non-degradable polystyrene suspensions. By using an interferon type I inducible Mx2 promoter construct to drive luciferase gene expression, the highest luminosity was observed in response to bacteria, indicating that the system could also be employed to monitor implant infections. Overall, labeled bone marrow cells yielded specific, well-defined localized signals that correlated with the inflammatory responses to implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2149-2158, 2016.