• 14-3-3 proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall.

      Voigt, Jürgen; Frank, Ronald; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2003-06)
      The cell wall of the unicellular green alga Chlamydomonas reinhardtii consists predominantly of Hyp-rich glycoproteins, which also occur in the extracellular matrix of multicellular green algae and higher plants. In addition to the Hyp-rich polypeptides, the insoluble glycoprotein framework of the Chlamydomonas cell wall contains minor amounts of 14-3-3 proteins, as revealed by immunochemical studies and mass spectroscopic analysis of tryptic peptides. Polypeptides immunologically related to the 14-3-3 proteins also were found in the culture medium of Chlamydomonas. The levels of two of these 14-3-3-related polypeptides were decreased in the culture medium of the wall-deficient mutant cw-15. These findings indicate that 14-3-3 proteins are involved in the cross-linking of Hyp-rich glycoproteins in the Chlamydomonas cell wall.
    • Biochemical and NMR analyses of an SF3b155-p14-U2AF-RNA interaction network involved in branch point definition during pre-mRNA splicing.

      Spadaccini, Roberta; Reidt, Ulrich; Dybkov, Olexandr; Will, Cindy; Frank, Ronald; Stier, Gunter; Corsini, Lorenzo; Wahl, Markus C; Lührmann, Reinhard; Sattler, Michael; European Molecular Biology Laboratory Heidelberg, Meyerhofstrasse 1, D-69117 Heidelberg, Germany. (2006-03)
      The p14 subunit of the essential splicing factor 3b (SF3b) can be cross-linked to the branch-point adenosine of pre-mRNA introns within the spliceosome. p14 stably interacts with the SF3b subunit SF3b155, which also binds the 65-kDa subunit of U2 auxiliary splicing factor (U2AF65). We combined biochemical and NMR techniques to study the conformation of p14 either alone or complexed with SF3b155 fragments, as well as an interaction network involving p14, SF3b155, U2AF65, and U2 snRNA/pre-mRNA. p14 comprises a canonical RNA recognition motif (RRM) with an additional C-terminal helix (alphaC) and a beta hairpin insertion. SF3b155 binds to the beta-sheet surface of p14, thereby occupying the canonical RNA-binding site of the p14 RRM. The minimal region of SF3b155 interacting with p14 (i.e., residues 381-424) consists of four alpha-helices, which are partially preformed in isolation. Helices alpha2 and alpha3 (residues 401-415) constitute the core p14-binding epitope. Regions of SF3b155 binding to p14 and U2AF65 are nonoverlapping. This allows for a simultaneous interaction of SF3b155 with both proteins, which may support the stable association of U2 snRNP with the pre-mRNA. p14-RNA interactions are modulated by SF3b155 and the RNA-binding site of the p14-SF3b155 complex involves the noncanonical beta hairpin insertion of the p14 RRM, consistent with the beta-sheet surface being occupied by the helical SF3b155 peptide and p14 helix alphaC. Our data suggest that p14 lacks inherent specificity for recognizing the branch point, but that some specificity may be achieved by scaffolding interactions involving other components of SF3b.
    • The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids.

      Howell, B W; Lanier, L M; Frank, R; Gertler, F B; Cooper, J A; Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA (1999-07)
      Disabled gene products are important for nervous system development in drosophila and mammals. In mice, the Dab1 protein is thought to function downstream of the extracellular protein Reln during neuronal positioning. The structures of Dab proteins suggest that they mediate protein-protein or protein-membrane docking functions. Here we show that the amino-terminal phosphotyrosine-binding (PTB) domain of Dab1 binds to the transmembrane glycoproteins of the amyloid precursor protein (APP) and low-density lipoprotein receptor families and the cytoplasmic signaling protein Ship. Dab1 associates with the APP cytoplasmic domain in transfected cells and is coexpressed with APP in hippocampal neurons. Screening of a set of altered peptide sequences showed that the sequence GYXNPXY present in APP family members is an optimal binding sequence, with approximately 0.5 microM affinity. Unlike other PTB domains, the Dab1 PTB does not bind to tyrosine-phosphorylated peptide ligands. The PTB domain also binds specifically to phospholipid bilayers containing phosphatidylinositol 4P (PtdIns4P) or PtdIns4,5P2 in a manner that does not interfere with protein binding. We propose that the PTB domain permits Dab1 to bind specifically to transmembrane proteins containing an NPXY internalization signal.
    • Generation of novel-substrate-accepting biphenyl dioxygenases through segmental random mutagenesis and identification of residues involved in enzyme specificity.

      Zielinski, Marco; Kahl, Silke; Standfuss-Gabisch, Christine; Cámara, Beatriz; Seeger, Michael; Hofer, Bernd; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2006-03)
      Aryl-hydroxylating dioxygenases are of interest for the degradation of persistant aromatic pollutants, such as polychlorobiphenyls (PCBs), or as catalysts for the functionalization of aromatic scaffolds. In order to achieve dioxygenation of technical mixtures of PCBs, enzymes with broadened or altered substrate ranges are essential. To alter the substrate specificity of the biphenyl dioxygenase (BphA) of Burkholderia xenovorans LB400, we applied a directed evolution approach that used structure-function relationship data to target random mutageneses to specific segments of the enzyme. The limitation of random amino acid (AA) substitutions to regions that are critical for substrate binding and the exclusion of AA exchanges from positions that are essential for catalytic activity yielded enzyme variants of interest at comparatively high frequencies. After only a single mutagenic cycle, 10 beneficial variants were detected in a library of fewer than 1,000 active enzymes. Compared to the parental BphA, they showed between 5- and 200-fold increased turnover of chlorinated biphenyls, with substituent patterns that rendered them largely recalcitrant to attack by BphA-LB400. Determination of their sequences identified AAs that prevent the acceptance of specific PCBs by the wild-type enzyme, such as Pro334 and Phe384. The results suggest prime targets for subsequent cycles of BphA modification. Correlations with a three-dimensional model of the enzyme indicated that most of the exchanges with major influence on substrate turnover do not involve pocket-lining residues and had not been predictable through structural modeling.
    • Identification of a PA-binding peptide with inhibitory activity against influenza A and B virus replication.

      Wunderlich, Kerstin; Mayer, Daniel; Ranadheera, Charlene; Holler, Anne-Sophie; Mänz, Benjamin; Martin, Arnold; Chase, Geoffrey; Tegge, Werner; Frank, Ronald; Kessler, Ulrich; Schwemmle, Martin; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2009-10-20)
      There is an urgent need for new drugs against influenza type A and B viruses due to incomplete protection by vaccines and the emergence of resistance to current antivirals. The influenza virus polymerase complex, consisting of the PB1, PB2 and PA subunits, represents a promising target for the development of new drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between the PB1 and PA subunits of the polymerase complex of influenza A virus using a small peptide derived from the PA-binding domain of PB1. However, this influenza A virus-derived peptide did not affect influenza B virus polymerase activity. Here we report that the PA-binding domain of the polymerase subunit PB1 of influenza A and B viruses is highly conserved and that mutual amino acid exchange shows that they cannot be functionally exchanged with each other. Based on phylogenetic analysis and a novel biochemical ELISA-based screening approach, we were able to identify an influenza A-derived peptide with a single influenza B-specific amino acid substitution which efficiently binds to PA of both virus types. This dual-binding peptide blocked the viral polymerase activity and growth of both virus types. Our findings provide proof of principle that protein-protein interaction inhibitors can be generated against influenza A and B viruses. Furthermore, this dual-binding peptide, combined with our novel screening method, is a promising platform to identify new antiviral lead compounds.
    • Identification of high-affinity PB1-derived peptides with enhanced affinity to the PA protein of influenza A virus polymerase.

      Wunderlich, Kerstin; Juozapaitis, Mindaugas; Ranadheera, Charlene; Kessler, Ulrich; Martin, Arnold; Eisel, Jessica; Beutling, Ulrike; Frank, Ronald; Schwemmle, Martin; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-02)
      The influenza A virus polymerase complex, consisting of the subunits PB1, PB2, and PA, represents a promising target for the development of new antiviral drugs. We have previously demonstrated the feasibility of targeting the protein-protein interaction domain between PA and PB1 using peptides derived from the extreme N terminus of PB1 (amino acids [aa] 1 to 15), comprising the PA-binding domain of PB1. To increase the binding affinity of these peptides, we performed a systematic structure-affinity relationship analysis. Alanine and aspartic acid scans revealed that almost all amino acids in the core binding region (aa 5 to 11) are indispensable for PA binding. Using a library of immobilized peptides representing all possible single amino acid substitutions, we were able to identify amino acid positions outside the core PA-binding region (aa 1, 3, 12, 14, and 15) that are variable and can be replaced by affinity-enhancing residues. Surface plasmon resonance binding studies revealed that combination of several affinity-enhancing mutations led to an additive effect. Thus, the feasibility to enhance the PA-binding affinity presents an intriguing possibility to increase antiviral activity of the PB1-derived peptide and one step forward in the development of an antiviral drug against influenza A viruses.
    • The interaction of the gammaherpesvirus 68 orf73 protein with cellular BET proteins affects the activation of cell cycle promoters.

      Ottinger, Matthias; Pliquet, Daniel; Christalla, Thomas; Frank, Ronald; Stewart, James P; Schulz, Thomas F; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2009-05)
      Infection of mice with murine gammaherpesvirus 68 (MHV-68) provides a valuable animal model for gamma-2 herpesvirus (rhadinovirus) infection and pathogenesis. The MHV-68 orf73 protein has been shown to be required for the establishment of viral latency in vivo. This study describes a novel transcriptional activation function of the MHV-68 orf73 protein and identifies the cellular bromodomain containing BET proteins Brd2/RING3, Brd3/ORFX, and BRD4 as interaction partners for the MHV-68 orf73 protein. BET protein members are known to interact with acetylated histones, and Brd2 and Brd4 have been implicated in fundamental cellular processes, including cell cycle regulation and transcriptional regulation. Using MHV-68 orf73 peptide array assays, we identified Brd2 and Brd4 interaction sites in the orf73 protein. Mutation of one binding site led to a loss of the interaction with Brd2/4 but not the retinoblastoma protein Rb, to impaired chromatin association, and to a decreased ability to activate the BET-responsive cyclin D1, D2, and E promoters. The results therefore pinpoint the binding site for Brd2/4 in a rhadinoviral orf73 protein and suggest that the recruitment of a member of the BET protein family allows the MHV-68 orf73 protein to activate the promoters of G(1)/S cyclins. These findings point to parallels between the transcriptional activator functions of rhadinoviral orf73 proteins and papillomavirus E2 proteins.
    • Mapping of NRF binding motifs of NF-kappaB p65 subunit.

      Reboll, Marc R; Schweda, Aike T; Bartels, Myriam; Franke, Raimo; Frank, Ronald; Nourbakhsh, Mahtab; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-11)
      NF-kappaB repressing factor (NRF) is a nuclear transcription factor that binds to a specific DNA sequence in NF-kappaB target promoters. Previous reports suggested that NRF interferes with the transcriptional activity of NF-kappaB binding sites through a direct interaction with NF-kappaB subunits. The aim of this study was to map specific NRF binding domains in the NF-kappaB proteins, p65 and p50. Our data demonstrate that NRF is able to interact with the p65 subunit and inhibit its transcription enhancing activity in reporter gene experiments. Using tandem affinity purifications (TAP), we show that NRF protein significantly binds to the endogenous p65, subunit but not to the p50 subunit. The selective binding activity of the NRF protein is consistently mediated by the N-terminal domain of NRF (Amino acids 1-380). Moreover, the Rel homology domain (RHD) of p65 is sufficient for binding to the N-terminal domain of NRF. Using detailed peptide mapping studies, we finally identify three peptide motifs in p65 RHD showing distinctive binding specificities for the NRF protein. According to the predicted structure of p65, all three peptide motifs align within an exposed region of p65 and might hint at promising targets for inhibitors.
    • Multiple antibody targets on herpes B glycoproteins B and D identified by screening sera of infected rhesus macaques with peptide microarrays.

      Hotop, Sven-Kevin; Abd El Wahed, Ahmed; Beutling, Ulrike; Jentsch, Dieter; Motzkus, Dirk; Frank, Ronald; Hunsmann, Gerhard; Stahl-Hennig, Christiane; Fritz, Hans-Joachim; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014)
      Herpes B virus (or Herpesvirus simiae or Macacine herpesvirus 1) is endemic in many populations of macaques, both in the wild and in captivity. The virus elicits only mild clinical symptoms (if any) in monkeys, but can be transmitted by various routes, most commonly via bites, to humans where it causes viral encephalitis with a high mortality rate. Hence, herpes B constitutes a considerable occupational hazard for animal caretakers, veterinarians and laboratory personnel. Efforts are therefore being made to reduce the risk of zoonotic infection and to improve prognosis after accidental exposure. Among the measures envisaged are serological surveillance of monkey colonies and specific diagnosis of herpes B zoonosis against a background of antibodies recognizing the closely related human herpes simplex virus (HSV). 422 pentadecapeptides covering, in an overlapping fashion, the entire amino acid sequences of herpes B proteins gB and gD were synthesized and immobilized on glass slides. Antibodies present in monkey sera that bind to subsets of the peptide collection were detected by microserological techniques. With 42 different rhesus macaque sera, 114 individual responses to 18 different antibody target regions (ATRs) were recorded, 17 of which had not been described earlier. This finding may pave the way for a peptide-based, herpes B specific serological diagnostic test.
    • Peptide-mediated interference with influenza A virus polymerase.

      Ghanem, Alexander; Mayer, Daniel; Chase, Geoffrey; Tegge, Werner; Frank, Ronald; Kochs, Georg; García-Sastre, Adolfo; Schwemmle, Martin; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2007-07)
      The assembly of the polymerase complex of influenza A virus from the three viral polymerase subunits PB1, PB2, and PA is required for viral RNA synthesis. We show that peptides which specifically bind to the protein-protein interaction domains in the subunits responsible for complex formation interfere with polymerase complex assembly and inhibit viral replication. Specifically, we provide evidence that a 25-amino-acid peptide corresponding to the PA-binding domain of PB1 blocks the polymerase activity of influenza A virus and inhibits viral spread. Targeting polymerase subunit interactions therefore provides a novel strategy to develop antiviral compounds against influenza A virus or other viruses.