group leader: Schmitz

Recent Submissions

  • A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance.

    Zhao, Gang; Wirth, Dagmar; Schmitz, Ingo; Meyer-Hermann, Michael; Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106, Germany. (2017-11-08)
    Physiological insulin secretion exhibits various temporal patterns, the dysregulation of which is involved in diabetes development. We analyzed the impact of first-phase and pulsatile insulin release on glucose and lipid control with various hepatic insulin signaling networks. The mathematical model suggests that atypical protein kinase C (aPKC) undergoes a bistable switch-on and switch-off, under the control of insulin receptor substrate 2 (IRS2). The activation of IRS1 and IRS2 is temporally separated due to the inhibition of IRS1 by aPKC. The model further shows that the timing of aPKC switch-off is delayed by reduced first-phase insulin and reduced amplitude of insulin pulses. Based on these findings, we propose a sequential model of postprandial hepatic control of glucose and lipid by insulin, according to which delayed aPKC switch-off contributes to selective hepatic insulin resistance, which is a long-standing paradox in the field.
  • UL36 Rescues Apoptosis Inhibition and In vivo Replication of a Chimeric MCMV Lacking the M36 Gene.

    Chaudhry, M Zeeshan; Kasmapour, Bahram; Plaza-Sirvent, Carlos; Bajagic, Milica; Casalegno Garduño, Rosaely; Borkner, Lisa; Lenac Roviš, Tihana; Scrima, Andrea; Jonjic, Stipan; Schmitz, Ingo; Cicin-Sain, Luka; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
    Apoptosis is an important defense mechanism mounted by the immune system to control virus replication. Hence, cytomegaloviruses (CMV) evolved and acquired numerous anti-apoptotic genes. The product of the human CMV (HCMV) UL36 gene, pUL36 (also known as vICA), binds to pro-caspase-8, thus inhibiting death-receptor apoptosis and enabling viral replication in differentiated THP-1 cells. In vivo studies of the function of HCMV genes are severely limited due to the strict host specificity of cytomegaloviruses, but CMV orthologues that co-evolved with other species allow the experimental study of CMV biology in vivo. The mouse CMV (MCMV) homolog of the UL36 gene is called M36, and its protein product (pM36) is a functional homolog of vICA that binds to murine caspase-8 and inhibits its activation. M36-deficient MCMV is severely growth impaired in macrophages and in vivo. Here we show that pUL36 binds to the murine pro-caspase-8, and that UL36 expression inhibits death-receptor apoptosis in murine cells and can replace M36 to allow MCMV growth in vitro and in vivo. We generated a chimeric MCMV expressing the UL36 ORF sequence instead of the M36 one. The newly generated MCMV(UL36) inhibited apoptosis in macrophage lines RAW 264.7, J774A.1, and IC-21 and its growth was rescued to wild type levels. Similarly, growth was rescued in vivo in the liver and spleen, but only partially in the salivary glands of BALB/c and C57BL/6 mice. In conclusion, we determined that an immune-evasive HCMV gene is conserved enough to functionally replace its MCMV counterpart and thus allow its study in an in vivo setting. As UL36 and M36 proteins engage the same molecular host target, our newly developed model can facilitate studies of anti-viral compounds targeting pUL36 in vivo.
  • c-FLIP Expression in Foxp3-Expressing Cells Is Essential for Survival of Regulatory T Cells and Prevention of Autoimmunity.

    Plaza-Sirvent, Carlos; Schuster, Marc; Neumann, Yvonne; Heise, Ulrike; Pils, Marina C; Schulze-Osthoff, Klaus; Schmitz, Ingo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-03)
    Regulatory T (Treg) cells are critical for the shutdown of immune responses and have emerged as valuable targets of immunotherapies. Treg cells can rapidly proliferate; however, the homeostatic processes that limit excessive Treg cell numbers are poorly understood. Here, we show that, compared to conventional T cells, Treg cells have a high apoptosis rate ex vivo correlating with low c-FLIP expression. Treg-specific deletion of c-FLIP in mice resulted in fatal autoimmune disease of a scurfy-like phenotype characterized by absent peripheral Treg cells, activation of effector cells, multi-organ immune cell infiltration, and premature death. Surprisingly, blocking CD95L did not rescue Treg survival in vivo, suggesting additional survival functions of c-FLIP in Treg cells in addition to its classical role in the inhibition of death receptor signaling. Thus, our data reveal a central role for c-FLIP in Treg cell homeostasis and prevention of autoimmunity.
  • Intracellular Staphylococcus aureus eludes selective autophagy by activating a host cell kinase.

    Neumann, Yvonne; Bruns, Svenja A; Rohde, Manfred; Prajsnar, Tomasz K; Foster, Simon J; Schmitz, Ingo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-11)
    Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen Staphylococcus aureus (S. aureus) was originally considered solely as an extracellular bacterium, but is now recognized additionally to invade host cells, which might be crucial for persistence. However, the intracellular fate of S. aureus is incompletely understood. Here, we show for the first time induction of selective autophagy by S. aureus infection, its escape from autophagosomes and proliferation in the cytoplasm using live cell imaging. After invasion, S. aureus becomes ubiquitinated and recognized by receptor proteins such as SQSTM1/p62 leading to phagophore recruitment. Yet, S. aureus evades phagophores and prevents further degradation by a MAPK14/p38α MAP kinase-mediated blockade of autophagy. Our study demonstrates a novel bacterial strategy to block autophagy and secure survival inside the host cell.
  • Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells.

    Sosna, Justyna; Philipp, Stephan; Fuchslocher Chico, Johaiber; Saggau, Carina; Fritsch, Jürgen; Föll, Alexandra; Plenge, Johannes; Arenz, Christoph; Pinkert, Thomas; Kalthoff, Holger; Trauzold, Anna; Schmitz, Ingo; Schütze, Stefan; Adam, Dieter; Helmholtz Centre for infection research (2016-10-15)
    Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H(+)-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches.
  • Atypical IκB proteins in immune cell differentiation and function.

    Annemann, Michaela; Plaza-Sirvent, Carlos; Schuster, Marc; Katsoulis-Dimitriou, Konstantinos; Kliche, Stefanie; Schraven, Burkhart; Schmitz, Ingo (2016-03)
    The NF-κB/Rel signalling pathway plays a crucial role in numerous biological processes, including innate and adaptive immunity. NF-κB is a family of transcription factors, whose activity is regulated by the inhibitors of NF-κB (IκB). The IκB proteins comprise two distinct groups, the classical (cytoplasmic) and the atypical (nuclear) IκB proteins. Although the cytoplasmic regulation of NF-κB is well characterised, its nuclear regulation mechanisms remain marginally elucidated. However, work from recent years indicated that nuclear IκBs contribute significantly to the modulation of NF-κB-mediated transcription in the immune system. Here, we discuss the role of the atypical IκB proteins Bcl-3, IκBζ, IκBNS, IκBη and IκBL for the regulation of gene expression and effector functions in immune cells.
  • Gadd45 proteins in immunity.

    Schmitz, Ingo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2013)
    The vertebrate immune system protects the host against invading pathogens such as viruses, bacteria and parasites. It consists of an innate branch and an adaptive branch that provide immediate and long-lasting protection, respectively. As the immune system is composed of different cell types and distributed throughout the whole body, immune cells need to communicate with each other. Intercellular communication in the immune system is mediated by cytokines, which bind to specific receptors on the cell surface and activate intracellular signalling networks. Growth arrest and DNA damage-inducible 45 (Gadd45) proteins are important components of these intracellular signalling networks. They are induced by a number of cytokines and by bacterial lipopolysaccharide. Within the innate immune system, Gadd45 proteins are crucial for the differentiation of myeloid cells as well as for the function of granulocytes and macrophages. Moreover, Gadd45β regulates autophagy, a catabolic pathway that also degrades intracellular pathogens. Regarding adaptive immunity, Gadd45 proteins are especially well characterized in T cells. For instance, Gadd45β and Gadd45γ regulate cytokine expression and Th1 differentiation, while Gadd45α inhibits p38 kinase activation downstream of the T cell receptor. Due to their many functions in the immune system, deficiency in Gadd45 proteins causes autoimmune diseases and less efficient tumour immunosurveillance.
  • Bactericidal Activity of the Human Skin Fatty Acid cis-6-Hexadecanoic Acid on Staphylococcus aureus.

    Cartron, Michaël L; England, Simon R; Chiriac, Alina Iulia; Josten, Michaele; Turner, Robert; Rauter, Yvonne; Hurd, Alexander; Sahl, Hans-Georg; Jones, Simon; Foster, Simon J (2014-07)
    Human skin fatty acids are a potent aspect of our innate defenses, giving surface protection against potentially invasive organisms. They provide an important parameter in determining the ecology of the skin microflora, and alterations can lead to increased colonization by pathogens such as Staphylococcus aureus. Harnessing skin fatty acids may also give a new avenue of exploration in the generation of control measures against drug-resistant organisms. Despite their importance, the mechanism(s) whereby skin fatty acids kill bacteria has remained largely elusive. Here, we describe an analysis of the bactericidal effects of the major human skin fatty acid cis-6-hexadecenoic acid (C6H) on the human commensal and pathogen S. aureus. Several C6H concentration-dependent mechanisms were found. At high concentrations, C6H swiftly kills cells associated with a general loss of membrane integrity. However, C6H still kills at lower concentrations, acting through disruption of the proton motive force, an increase in membrane fluidity, and its effects on electron transfer. The design of analogues with altered bactericidal effects has begun to determine the structural constraints on activity and paves the way for the rational design of new antistaphylococcal agents.
  • Constitutive expression of murine c-FLIPR causes autoimmunity in aged mice.

    Ewald, F; Annemann, M; Pils, M C; Plaza-Sirvent, C; Neff, F; Erck, C; Reinhold, D; Schmitz, I (2014)
    Death receptor-mediated apoptosis is a key mechanism for the control of immune responses and dysregulation of this pathway may lead to autoimmunity. Cellular FLICE-inhibitory proteins (c-FLIPs) are known as inhibitors of death receptor-mediated apoptosis. The only short murine c-FLIP splice variant is c-FLIPRaji (c-FLIPR). To investigate the functional role of c-FLIPR in the immune system, we used the vavFLIPR mouse model constitutively expressing murine c-FLIPR in all hematopoietic compartments. Lymphocytes from these mice are protected against CD95-mediated apoptosis and activation-induced cell death. Young vavFLIPR mice display normal lymphocyte compartments, but the lymphocyte populations alter with age. We identified reduced levels of T cells and slightly higher levels of B cells in 1-year-old vavFLIPR mice compared with wild-type (WT) littermates. Moreover, both B and T cells from aged vavFLIPR animals show activated phenotypes. Sera from 1-year-old WT and transgenic animals were analysed for anti-nuclear antibodies. Notably, elevated titres of these autoantibodies were detected in vavFLIPR sera. Furthermore, tissue damage in kidneys and lungs from aged vavFLIPR animals was observed, indicating that vavFLIPR mice develop a systemic lupus erythematosus-like phenotype with age. Taken together, these data suggest that c-FLIPR is an important modulator of apoptosis and enforced expression leads to autoimmunity.
  • Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy.

    Keil, E; Höcker, R; Schuster, M; Essmann, F; Ueffing, N; Hoffman, B; Liebermann, D A; Pfeffer, K; Schulze-Osthoff, K; Schmitz, I; Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf, Germany. (2013-02)
    Autophagy is a lysosomal degradation pathway important for cellular homeostasis, mammalian development, cancer and immunity. Many molecular components of autophagy have been identified, but little is known about regulatory mechanisms controlling their effector functions. Here, we show that, in contrast to other p38 MAP kinase activators, the growth arrest and DNA damage 45 beta (Gadd45β)-MAPK/ERK kinase kinase 4 (MEKK4) pathway specifically directs p38 to autophagosomes. This process results in an accumulation of autophagosomes through p38-mediated inhibition of lysosome fusion. Conversely, autophagic flux is increased in p38-deficient fibroblasts and Gadd45β-deficient cells. We further identified the underlying mechanism and demonstrate that phosphorylation of the autophagy regulator autophagy-related (Atg)5 at threonine 75 through p38 is responsible for inhibition of starvation-induced autophagy. Thus, we show for the first time that Atg5 activity is controlled by phosphorylation and, moreover, that the spatial regulation of p38 by Gadd45β/MEKK4 negatively regulates the autophagic process.
  • Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy.

    Keil, E; Höcker, R; Schuster, M; Essmann, F; Ueffing, N; Hoffman, B; Liebermann, D A; Pfeffer, K; Schulze-Osthoff, K; Schmitz, I; Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Universitätsstr. 1, Düsseldorf, Germany. (2013-02)
    Autophagy is a lysosomal degradation pathway important for cellular homeostasis, mammalian development, cancer and immunity. Many molecular components of autophagy have been identified, but little is known about regulatory mechanisms controlling their effector functions. Here, we show that, in contrast to other p38 MAP kinase activators, the growth arrest and DNA damage 45 beta (Gadd45β)-MAPK/ERK kinase kinase 4 (MEKK4) pathway specifically directs p38 to autophagosomes. This process results in an accumulation of autophagosomes through p38-mediated inhibition of lysosome fusion. Conversely, autophagic flux is increased in p38-deficient fibroblasts and Gadd45β-deficient cells. We further identified the underlying mechanism and demonstrate that phosphorylation of the autophagy regulator autophagy-related (Atg)5 at threonine 75 through p38 is responsible for inhibition of starvation-induced autophagy. Thus, we show for the first time that Atg5 activity is controlled by phosphorylation and, moreover, that the spatial regulation of p38 by Gadd45β/MEKK4 negatively regulates the autophagic process.
  • Atypical IκB proteins - nuclear modulators of NF-κB signaling.

    Schuster, Marc; Annemann, Michaela; Plaza-Sirvent, Carlos; Schmitz, Ingo; Systems-oriented Immunology and Inflammation Research, Helmholtz Center for Infection Research, Braunschweig, 38124, Germany. ingo.schmitz@helmholtz-hzi.de. (2013)
    Nuclear factor κB (NF-κB) controls a multitude of physiological processes such as cell differentiation, cytokine expression, survival and proliferation. Since NF-κB governs embryogenesis, tissue homeostasis and the functions of innate and adaptive immune cells it represents one of the most important and versatile signaling networks known. Its activity is regulated via the inhibitors of NF-κB signaling, the IκB proteins. Classical IκBs, like the prototypical protein IκBα, sequester NF-κB transcription factors in the cytoplasm by masking of their nuclear localization signals (NLS). Thus, binding of NF-κB to the DNA is inhibited. The accessibility of the NLS is controlled via the degradation of IκBα. Phosphorylation of the conserved serine residues 32 and 36 leads to polyubiquitination and subsequent proteasomal degradation. This process marks the central event of canonical NF-κB activation. Once their NLS is accessible, NF-κB transcription factors translocate into the nucleus, bind to the DNA and regulate the transcription of their respective target genes. Several studies described a distinct group of atypical IκB proteins, referred to as the BCL-3 subfamily. Those atypical IκBs show entirely different sub-cellular localizations, activation kinetics and an unexpected functional diversity. First of all, their interaction with NF-κB transcription factors takes place in the nucleus in contrast to classical IκBs, whose binding to NF-κB predominantly occurs in the cytoplasm. Secondly, atypical IκBs are strongly induced after NF-κB activation, for example by LPS and IL-1β stimulation or triggering of B cell and T cell antigen receptors, but are not degraded in the first place like their conventional relatives. Finally, the interaction of atypical IκBs with DNA-associated NF-κB transcription factors can further enhance or diminish their transcriptional activity. Thus, they do not exclusively act as inhibitors of NF-κB activity. The capacity to modulate NF-κB transcription either positively or negatively, represents their most important and unique mechanistic difference to classical IκBs. Several reports revealed the importance of atypical IκB proteins for immune homeostasis and the severe consequences following their loss of function. This review summarizes insights into the physiological processes regulated by this protein class and the relevance of atypical IκB functioning.
  • The role of c-FLIP splice variants in urothelial tumours.

    Ewald, F; Ueffing, N; Brockmann, L; Hader, C; Telieps, T; Schuster, M; Schulz, W A; Schmitz, I; Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg and Department of Immune Control, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany. (2011)
    Deregulation of apoptosis is common in cancer and is often caused by overexpression of anti-apoptotic proteins in tumour cells. One important regulator of apoptosis is the cellular FLICE-inhibitory protein (c-FLIP), which is overexpressed, for example, in melanoma and Hodgkin's lymphoma cells. Here, we addressed the question whether deregulated c-FLIP expression in urothelial carcinoma impinges on the ability of death ligands to induce apoptosis. In particular, we investigated the role of the c-FLIP splice variants c-FLIP(long) (c-FLIP(L)) and c-FLIP(short) (c-FLIP(S)), which can have opposing functions. We observed diminished expression of the c-FLIP(L) isoform in urothelial carcinoma tissues as well as in established carcinoma cell lines compared with normal urothelial tissues and cells, whereas c-FLIP(S) was unchanged. Overexpression and RNA interference studies in urothelial cell lines nevertheless demonstrated that c-FLIP remained a crucial factor conferring resistance towards induction of apoptosis by death ligands CD95L and TRAIL. Isoform-specific RNA interference showed c-FLIP(L) to be of particular importance. Thus, urothelial carcinoma cells appear to fine-tune c-FLIP expression to a level sufficient for protection against activation of apoptosis by the extrinsic pathway. Therefore, targeting c-FLIP, and especially the c-FLIP(L) isoform, may facilitate apoptosis-based therapies of bladder cancer in otherwise resistant tumours.