group leader: Prof. McHardy

Recent Submissions

  • Tumor Necrosis Factor-Mediated Survival of CD169 Cells Promotes Immune Activation during Vesicular Stomatitis Virus Infection.

    Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar; Kloetgen, Andreas; Namineni, Sukumar; Zhuang, Yuan; Honke, Nadine; Shaabani, Namir; Bellora, Nicolas; Doerrenberg, Mareike; Trilling, Mirko; Pozdeev, Vitaly I; van Rooijen, Nico; Scheu, Stefanie; Pfeffer, Klaus; Crocker, Paul R; Tanaka, Masato; Duggimpudi, Sujitha; Knolle, Percy; Heikenwalder, Mathias; Ruland, Jürgen; Mak, Tak W; Brenner, Dirk; Pandyra, Aleksandra A; Hoell, Jessica I; Borkhardt, Arndt; Häussinger, Dieter; Lang, Karl S; Lang, Philipp A; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-02-01)
    Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169
  • Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.

    Brugiroux, Sandrine; Beutler, Markus; Pfann, Carina; Garzetti, Debora; Ruscheweyh, Hans-Joachim; Ring, Diana; Diehl, Manuel; Herp, Simone; Lötscher, Yvonne; Hussain, Saib; Bunk, Boyke; Pukall, Rüdiger; Huson, Daniel H; Münch, Philipp C; McHardy, Alice C; McCoy, Kathy D; Macpherson, Andrew J; Loy, Alexander; Clavel, Thomas; Berry, David; Stecher, Bärbel; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-11-21)
    Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM
  • Seqenv: Linking sequences to environments through text mining

    BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany.
    Understanding the distribution of taxa and associated traits across different environments is one of the central questions in microbial ecology. High-throughput sequencing (HTS) studies are presently generating huge volumes of data to address this biogeographical topic. However, these studies are often focused on specific environment types or processes leading to the production of individual, unconnected datasets. The large amounts of legacy sequence data with associated metadata that exist can be harnessed to better place the genetic information found in these surveys into a wider environmental context. Here we introduce a software program, seqenv, to carry out precisely such a task. It automatically performs similarity searches of short sequences against the ``nt'' nucleotide database provided by NCBI and, out of every hit, extracts-if it is available-the textual metadata field. After collecting all the isolation sources from all the search results, we run a text mining algorithm to identify and parse words that are associated with the Environmental Ontology (EnvO) controlled vocabulary. This, in turn, enables us to determine both in which environments individual sequences or taxa have previously been observed and, by weighted summation of those results, to summarize complete samples. We present two demonstrative applications of seqenv to a survey of ammonia oxidizing archaea as well as to a plankton paleome dataset from the Black Sea. These demonstrate the ability of the tool to reveal novel patterns in HTS and its utility in the fields of environmental source tracking, paleontology, and studies of microbial biogeography. To install seqenv, go to: https://github.com/xapple/seqenv. (c) 2016 Sinclair et al
  • AMBER: Assessment of Metagenome BinnERs.

    Meyer, Fernando; Hofmann, Peter; Belmann, Peter; Garrido-Oter, Ruben; Fritz, Adrian; Sczyrba, Alexander; McHardy, Alice C; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-06-08)
    Reconstructing the genomes of microbial community members is key to the interpretation of shotgun metagenome samples. Genome binning programs deconvolute reads or assembled contigs of such samples into individual bins, but assessing their quality is difficult due to the lack of evaluation software and standardized metrics. We present AMBER, an evaluation package for the comparative assessment of genome reconstructions from metagenome benchmark data sets. It calculates the performance metrics and comparative visualizations used in the first benchmarking challenge of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). As an application, we show the outputs of AMBER for eleven different binning programs on two CAMI benchmark data sets. AMBER is implemented in Python and available under the Apache 2.0 license on GitHub (https://github.com/CAMI-challenge/AMBER).
  • Bioinformatics Meets Virology: The European Virus Bioinformatics Center's Second Annual Meeting.

    Ibrahim, Bashar; Arkhipova, Ksenia; Andeweg, Arno C; Posada-Céspedes, Susana; Enault, François; Gruber, Arthur; Koonin, Eugene V; Kupczok, Anne; Lemey, Philippe; McHardy, Alice C; McMahon, Dino P; Pickett, Brett E; Robertson, David L; Scheuermann, Richard H; Zhernakova, Alexandra; Zwart, Mark P; Schönhuth, Alexander; Dutilh, Bas E; Marz, Manja; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-05-14)
    The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting.
  • "Candidatus Paraporphyromonas polyenzymogenes" encodes multi-modular cellulases linked to the type IX secretion system.

    Naas, A E; Solden, L M; Norbeck, A D; Brewer, H; Hagen, L H; Heggenes, I M; McHardy, A C; Mackie, R I; Paša-Tolić, L; Arntzen, M Ø; Eijsink, V G H; Koropatkin, N M; Hess, M; Wrighton, K C; Pope, P B; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-03-01)
    In nature, obligate herbivorous ruminants have a close symbiotic relationship with their gastrointestinal microbiome, which proficiently deconstructs plant biomass. Despite decades of research, lignocellulose degradation in the rumen has thus far been attributed to a limited number of culturable microorganisms. Here, we combine meta-omics and enzymology to identify and describe a novel Bacteroidetes family ("Candidatus MH11") composed entirely of uncultivated strains that are predominant in ruminants and only distantly related to previously characterized taxa.
  • 'Candidatus Adiutrix intracellularis', an endosymbiont of termite gut flagellates, is the first representative of a deep-branching clade of Deltaproteobacteria and a putative homoacetogen.

    Ikeda-Ohtsubo, Wakako; Strassert, Jürgen F H; Köhler, Tim; Mikaelyan, Aram; Gregor, Ivan; McHardy, Alice C; Tringe, Susannah Green; Hugenholtz, Phil; Radek, Renate; Brune, Andreas; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-09)
    Termite gut flagellates are typically colonized by specific bacterial symbionts. Here we describe the phylogeny, ultrastructure and subcellular location of 'Candidatus Adiutrix intracellularis', an intracellular symbiont of Trichonympha collaris in the termite Zootermopsis nevadensis. It represents a novel, deep-branching clade of uncultured Deltaproteobacteria widely distributed in intestinal tracts of termites and cockroaches. Fluorescence in situ hybridization and transmission electron microscopy localized the endosymbiont near hydrogenosomes in the posterior part and near the ectosymbiont 'Candidatus Desulfovibrio trichonymphae' in the anterior part of the host cell. The draft genome of 'Ca. Adiutrix intracellularis' obtained from a metagenomic library revealed the presence of a complete gene set encoding the Wood-Ljungdahl pathway, including two homologs of fdhF encoding hydrogenase-linked formate dehydrogenases (FDHH ) and all other components of the recently described hydrogen-dependent carbon dioxide reductase (HDCR) complex, which substantiates previous claims that the symbiont is capable of reductive acetogenesis from CO2 and H2 . The close phylogenetic relationship between the HDCR components and their homologs in homoacetogenic Firmicutes and Spirochaetes suggests that the deltaproteobacterium acquired the capacity for homoacetogenesis via lateral gene transfer. The presence of genes for nitrogen fixation and the biosynthesis of amino acids and cofactors indicate the nutritional nature of the symbiosis.
  • Sweep Dynamics (SD) plots: Computational identification of selective sweeps to monitor the adaptation of influenza A viruses.

    Klingen, Thorsten R; Reimering, Susanne; Loers, Jens; Mooren, Kyra; Klawonn, Frank; Krey, Thomas; Gabriel, Gülsah; McHardy, Alice Carolyn; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-01-10)
    Monitoring changes in influenza A virus genomes is crucial to understand its rapid evolution and adaptation to changing conditions e.g. establishment within novel host species. Selective sweeps represent a rapid mode of adaptation and are typically observed in human influenza A viruses. We describe Sweep Dynamics (SD) plots, a computational method combining phylogenetic algorithms with statistical techniques to characterize the molecular adaptation of rapidly evolving viruses from longitudinal sequence data. SD plots facilitate the identification of selective sweeps, the time periods in which these occurred and associated changes providing a selective advantage to the virus. We studied the past genome-wide adaptation of the 2009 pandemic H1N1 influenza A (pH1N1) and seasonal H3N2 influenza A (sH3N2) viruses. The pH1N1 influenza virus showed simultaneous amino acid changes in various proteins, particularly in seasons of high pH1N1 activity. Partially, these changes resulted in functional alterations facilitating sustained human-to-human transmission. In the evolution of sH3N2 influenza viruses, we detected changes characterizing vaccine strains, which were occasionally revealed in selective sweeps one season prior to the WHO recommendation. Taken together, SD plots allow monitoring and characterizing the adaptive evolution of influenza A viruses by identifying selective sweeps and their associated signatures. - - all data is published on GitHub: https://github.com/hzi-bifo/SDplots/tree/v1.0.0
  • Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate.

    Dong, Xiyang; Dröge, Johannes; von Toerne, Christine; Marozava, Sviatlana; McHardy, Alice C; Meckenstock, Rainer U; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017)
    The enrichment culture BPL is able to degrade benzene with sulfate as electron acceptor and is dominated by an organism of the genus Pelotomaculum. Members of Pelotomaculum are usually known to be fermenters, undergoing syntrophy with anaerobic respiring microorganisms or methanogens. By using a metagenomic approach, we reconstructed a high-quality genome (∼2.97 Mbp, 99% completeness) for Pelotomaculum candidate BPL. The proteogenomic data suggested that (1) anaerobic benzene degradation was activated by a yet unknown mechanism for conversion of benzene to benzoyl-CoA; (2) the central benzoyl-CoA degradation pathway involved reductive dearomatization by a class II benzoyl-CoA reductase followed by hydrolytic ring cleavage and modified β-oxidation; (3) the oxidative acetyl-CoA pathway was utilized for complete oxidation to CO2. Interestingly, the genome of Pelotomaculum candidate BPL has all the genes for a complete sulfate reduction pathway including a similar electron transfer mechanism for dissimilatory sulfate reduction as in other Gram-positive sulfate-reducing bacteria. The proteome analysis revealed that the essential enzymes for sulfate reduction were all formed during growth with benzene. Thus, our data indicated that, besides its potential to anaerobically degrade benzene, Pelotomaculum candidate BPL is the first member of the genus that can perform sulfate reduction.
  • Investigation of different nitrogen reduction routes and their key microbial players in wood chip-driven denitrification beds.

    Grießmeier, Victoria; Bremges, Andreas; McHardy, Alice Carolyn; Gescher, Johannes; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-12-05)
    Field denitrification beds containing polymeric plant material are increasingly used to eliminate nitrate from agricultural drainage water. They mirror a number of anoxic ecosystems. However, knowledge of the microbial composition, the interaction of microbial species, and the carbon degradation processes within these denitrification systems is sparse. This study revealed several new aspects of the carbon and nitrogen cycle, and these findings can be correlated with the dynamics of the microbial community composition and the activity of key species. Members of the order Pseudomonadales seem to be important players in denitrification at low nitrate concentrations, while a switch to higher nitrate concentrations seems to select for members of the orders Rhodocyclales and Rhizobiales. We observed that high nitrate loading rates lead to an unpredictable transition of the community's activity from denitrification to dissimilatory reduction of nitrate to ammonium (DNRA). This transition is mirrored by an increase in transcripts of the nitrite reductase gene nrfAH and the increase correlates with the activity of members of the order Ignavibacteriales. Denitrification reactors sustained the development of an archaeal community consisting of members of the Bathyarchaeota and methanogens belonging to the Euryarchaeota. Unexpectedly, the activity of the methanogens positively correlated with the nitrate loading rates.
  • Genomics and prevalence of bacterial and archaeal isolates from biogas-producing microbiomes.

    Maus, Irena; Bremges, Andreas; Stolze, Yvonne; Hahnke, Sarah; Cibis, Katharina G; Koeck, Daniela E; Kim, Yong S; Kreubel, Jana; Hassa, Julia; Wibberg, Daniel; Weimann, Aaron; Off, Sandra; Stantscheff, Robbin; Zverlov, Vladimir V; Schwarz, Wolfgang H; König, Helmut; Liebl, Wolfgang; Scherer, Paul; McHardy, A C; Sczyrba, Alexander; Klocke, Michael; Pühler, Alfred; Schlüter, Andreas; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017)
    To elucidate biogas microbial communities and processes, the application of high-throughput DNA analysis approaches is becoming increasingly important. Unfortunately, generated data can only partialy be interpreted rudimentary since databases lack reference sequences.
  • In Silico Vaccine Strain Prediction for Human Influenza Viruses.

    Klingen, Thorsten R; Reimering, Susanne; Guzmán, Carlos A; McHardy, Alice C; Braunschweiger Zentrum für Systembiology, Rebenring 56,38108 Braunschweig, Germany. (2017-10-09)
    Vaccines preventing seasonal influenza infections save many lives every year; however, due to rapid viral evolution, they have to be updated frequently to remain effective. To identify appropriate vaccine strains, the World Health Organization (WHO) operates a global program that continually generates and interprets surveillance data. Over the past decade, sophisticated computational techniques, drawing from multiple theoretical disciplines, have been developed that predict viral lineages rising to predominance, assess their suitability as vaccine strains, link genetic to antigenic alterations, as well as integrate and visualize genetic, epidemiological, structural, and antigenic data. These could form the basis of an objective and reproducible vaccine strain-selection procedure utilizing the complex, large-scale data types from surveillance. To this end, computational techniques should already be incorporated into the vaccine-selection process in an independent, parallel track, and their performance continuously evaluated.
  • A probabilistic model to recover individual genomes from metagenomes

    Dröge, Johannes; Schönhuth, Alexander; McHardy, Alice Carolyn; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany.; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany; Centrum Wiskunde & Informatica, Amsterdam, The Netherlands; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany (2017-05-22)
    Shotgun metagenomics of microbial communities reveal information about strains of relevance for applications in medicine, biotechnology and ecology. Recovering their genomes is a crucial but very challenging step due to the complexity of the underlying biological system and technical factors. Microbial communities are heterogeneous, with oftentimes hundreds of present genomes deriving from different species or strains, all at varying abundances and with different degrees of similarity to each other and reference data. We present a versatile probabilistic model for genome recovery and analysis, which aggregates three types of information that are commonly used for genome recovery from metagenomes. As potential applications we showcase metagenome contig classification, genome sample enrichment and genome bin comparisons. The open source implementation MGLEX is available via the Python Package Index and on GitHub and can be embedded into metagenome analysis workflows and programs.
  • Characterisation of a stable laboratory co-culture of acidophilic nanoorganisms.

    Krause, Susanne; Bremges, Andreas; Münch, Philipp C; McHardy, Alice C; Gescher, Johannes; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-06-12)
    This study describes the laboratory cultivation of ARMAN (Archaeal Richmond Mine Acidophilic Nanoorganisms). After 2.5 years of successive transfers in an anoxic medium containing ferric sulfate as an electron acceptor, a consortium was attained that is comprised of two members of the order Thermoplasmatales, a member of a proposed ARMAN group, as well as a fungus. The 16S rRNA identity of one archaeon is only 91.6% compared to the most closely related isolate Thermogymnomonas acidicola. Hence, this organism is the first member of a new genus. The enrichment culture is dominated by this microorganism and the ARMAN. The third archaeon in the community seems to be present in minor quantities and has a 100% 16S rRNA identity to the recently isolated Cuniculiplasma divulgatum. The enriched ARMAN species is most probably incapable of sugar metabolism because the key genes for sugar catabolism and anabolism could not be identified in the metagenome. Metatranscriptomic analysis suggests that the TCA cycle funneled with amino acids is the main metabolic pathway used by the archaea of the community. Microscopic analysis revealed that growth of the ARMAN is supported by the formation of cell aggregates. These might enable feeding of the ARMAN by or on other community members.
  • Novel Syntrophic Populations Dominate an Ammonia-Tolerant Methanogenic Microbiome.

    Frank, J A; Arntzen, M Ø; Sun, L; Hagen, L H; McHardy, A C; Horn, S J; Eijsink, V G H; Schnürer, A; Pope, P B; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-05-10)
    Biogas reactors operating with protein-rich substrates have high methane potential and industrial value; however, they are highly susceptible to process failure because of the accumulation of ammonia. High ammonia levels cause a decline in acetate-utilizing methanogens and instead promote the conversion of acetate via a two-step mechanism involving syntrophic acetate oxidation (SAO) to H2 and CO2, followed by hydrogenotrophic methanogenesis. Despite the key role of syntrophic acetate-oxidizing bacteria (SAOB), only a few culturable representatives have been characterized. Here we show that the microbiome of a commercial, ammonia-tolerant biogas reactor harbors a deeply branched, uncultured phylotype (unFirm_1) accounting for approximately 5% of the 16S rRNA gene inventory and sharing 88% 16S rRNA gene identity with its closest characterized relative. Reconstructed genome and quantitative metaproteomic analyses imply unFirm_1's metabolic dominance and SAO capabilities, whereby the key enzymes required for acetate oxidation are among the most highly detected in the reactor microbiome. While culturable SAOB were identified in genomic analyses of the reactor, their limited proteomic representation suggests that unFirm_1 plays an important role in channeling acetate toward methane. Notably, unFirm_1-like populations were found in other high-ammonia biogas installations, conjecturing a broader importance for this novel clade of SAOB in anaerobic fermentations. IMPORTANCE The microbial production of methane or "biogas" is an attractive renewable energy technology that can recycle organic waste into biofuel. Biogas reactors operating with protein-rich substrates such as household municipal or agricultural wastes have significant industrial and societal value; however, they are highly unstable and frequently collapse due to the accumulation of ammonia. We report the discovery of a novel uncultured phylotype (unFirm_1) that is highly detectable in metaproteomic data generated from an ammonia-tolerant commercial reactor. Importantly, unFirm_1 is proposed to perform a key metabolic step in biogas microbiomes, whereby it syntrophically oxidizes acetate to hydrogen and carbon dioxide, which methanogens then covert to methane. Only very few culturable syntrophic acetate-oxidizing bacteria have been described, and all were detected at low in situ levels compared to unFirm_1. Broader comparisons produced the hypothesis that unFirm_1 is a key mediator toward the successful long-term stable operation of biogas production using protein-rich substrates.
  • Determination of antigenicity-altering patches on the major surface protein of human influenza A/H3N2 viruses.

    Kratsch, Christina; Klingen, Thorsten R; Mümken, Linda; Steinbrück, Lars; McHardy, Alice Carolyn; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-01)
    Human influenza viruses are rapidly evolving RNA viruses that cause short-term respiratory infections with substantial morbidity and mortality in annual epidemics. Uncovering the general principles of viral coevolution with human hosts is important for pathogen surveillance and vaccine design. Protein regions are an appropriate model for the interactions between two macromolecules, but the currently used epitope definition for the major antigen of influenza viruses, namely hemagglutinin, is very broad. Here, we combined genetic, evolutionary, antigenic, and structural information to determine the most relevant regions of the hemagglutinin of human influenza A/H3N2 viruses for interaction with human immunoglobulins. We estimated the antigenic weights of amino acid changes at individual sites from hemagglutination inhibition data using antigenic tree inference followed by spatial clustering of antigenicity-altering protein sites on the protein structure. This approach determined six relevant areas (patches) for antigenic variation that had a key role in the past antigenic evolution of the viruses. Previous transitions between successive predominating antigenic types of H3N2 viruses always included amino acid changes in either the first or second antigenic patch. Interestingly, there was only partial overlap between the antigenic patches and the patches under strong positive selection. Therefore, besides alterations of antigenicity, other interactions with the host may shape the evolution of human influenza A/H3N2 viruses.
  • Survival trade-offs in plant roots during colonization by closely related beneficial and pathogenic fungi.

    Hacquard, Stéphane; Kracher, Barbara; Hiruma, Kei; Münch, Philipp C; Garrido-Oter, Ruben; Thon, Michael R; Weimann, Aaron; Damm, Ulrike; Dallery, Jean-Félix; Hainaut, Matthieu; Henrissat, Bernard; Lespinet, Olivier; Sacristán, Soledad; Ver Loren van Themaat, Emiel; Kemen, Eric; McHardy, Alice Carolyn; Schulze-Lefert, Paul; O'Connell, Richard J; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-05-06)
    The sessile nature of plants forced them to evolve mechanisms to prioritize their responses to simultaneous stresses, including colonization by microbes or nutrient starvation. Here, we compare the genomes of a beneficial root endophyte, Colletotrichum tofieldiae and its pathogenic relative C. incanum, and examine the transcriptomes of both fungi and their plant host Arabidopsis during phosphate starvation. Although the two species diverged only 8.8 million years ago and have similar gene arsenals, we identify genomic signatures indicative of an evolutionary transition from pathogenic to beneficial lifestyles, including a narrowed repertoire of secreted effector proteins, expanded families of chitin-binding and secondary metabolism-related proteins, and limited activation of pathogenicity-related genes in planta. We show that beneficial responses are prioritized in C. tofieldiae-colonized roots under phosphate-deficient conditions, whereas defense responses are activated under phosphate-sufficient conditions. These immune responses are retained in phosphate-starved roots colonized by pathogenic C. incanum, illustrating the ability of plants to maximize survival in response to conflicting stresses.
  • From Genomes to Phenotypes: Traitar, the Microbial Trait Analyzer.

    Weimann, Aaron; Mooren, Kyra; Frank, Jeremy; Pope, Phillip B; Bremges, Andreas; McHardy, Alice C; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-01-31)
    The number of sequenced genomes is growing exponentially, profoundly shifting the bottleneck from data generation to genome interpretation. Traits are often used to characterize and distinguish bacteria and are likely a driving factor in microbial community composition, yet little is known about the traits of most microbes. We describe Traitar, the microbial trait analyzer, which is a fully automated software package for deriving phenotypes from a genome sequence. Traitar provides phenotype classifiers to predict 67 traits related to the use of various substrates as carbon and energy sources, oxygen requirement, morphology, antibiotic susceptibility, proteolysis, and enzymatic activities. Furthermore, it suggests protein families associated with the presence of particular phenotypes. Our method uses L1-regularized L2-loss support vector machines for phenotype assignments based on phyletic patterns of protein families and their evolutionary histories across a diverse set of microbial species. We demonstrate reliable phenotype assignment for Traitar to bacterial genomes from 572 species of eight phyla, also based on incomplete single-cell genomes and simulated draft genomes. We also showcase its application in metagenomics by verifying and complementing a manual metabolic reconstruction of two novel Clostridiales species based on draft genomes recovered from commercial biogas reactors. Traitar is available at https://github.com/hzi-bifo/traitar. IMPORTANCE Bacteria are ubiquitous in our ecosystem and have a major impact on human health, e.g., by supporting digestion in the human gut. Bacterial communities can also aid in biotechnological processes such as wastewater treatment or decontamination of polluted soils. Diverse bacteria contribute with their unique capabilities to the functioning of such ecosystems, but lab experiments to investigate those capabilities are labor-intensive. Major advances in sequencing techniques open up the opportunity to study bacteria by their genome sequences. For this purpose, we have developed Traitar, software that predicts traits of bacteria on the basis of their genomes. It is applicable to studies with tens or hundreds of bacterial genomes. Traitar may help researchers in microbiology to pinpoint the traits of interest, reducing the amount of wet lab work required.
  • The PARA-suite: PAR-CLIP specific sequence read simulation and processing.

    Kloetgen, Andreas; Borkhardt, Arndt; Hoell, Jessica I; McHardy, Alice C; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016 (Sour)
    Next-generation sequencing technologies have profoundly impacted biology over recent years. Experimental protocols, such as photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP), which identifies protein-RNA interactions on a genome-wide scale, commonly employ deep sequencing. With PAR-CLIP, the incorporation of photoactivatable nucleosides into nascent transcripts leads to high rates of specific nucleotide conversions during reverse transcription. So far, the specific properties of PAR-CLIP-derived sequencing reads have not been assessed in depth. [Source code of the PARA-suite toolkit and the PARA-suite aligner (BWA PARA) are available at https://github.com/akloetgen/PARA-suite and https://github.com/akloetgen/PARA-suite_aligner , respectively, under the GNU GPLv3 license.]
  • Snowball: strain aware gene assembly of metagenomes.

    Gregor, I; Schönhuth, A; McHardy, A C; [BRICS] Braunschweiger Zentrum für Systembiology, Rebenring 56, 38106 Braunschweig, Germany. (2016-09-01)
    Gene assembly is an important step in functional analysis of shotgun metagenomic data. Nonetheless, strain aware assembly remains a challenging task, as current assembly tools often fail to distinguish among strain variants or require closely related reference genomes of the studied species to be available.

View more