• Cell therapy products: focus on issues with manufacturing and quality control of chimeric antigen receptor T-cell therapies

      Eyles, Jim E; Vessillier, Sandrine; Jones, Anika; Stacey, Glyn; Schneider, Christian K; Price, Jack; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany.
      Recent accelerated approvals of Chimeric Antigen Receptor T‐cell (CAR‐T) therapies targeting refractory haematological malignancies underscore the potential for this novel technology platform to provide new therapeutic options for oncology areas with high unmet medical needs. However, these powerful ‘living drugs’ are markedly different to conventional small molecule and biologic therapies on several levels. The highly complex nature and varied composition of CAR‐T based products still requires considerable investigation to resolve the best approaches to ensure reproducible and cost‐effective manufacture, clinical development, and application. This review will focus on key issues for manufacturing and quality control of these exciting new therapeutic modalities, preceded by a brief description of CAR principals and clinical development considerations. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
    • Microglia have a protective role in viral encephalitis-induced seizure development and hippocampal damage.

      Waltl, Inken; Käufer, Christopher; Gerhauser, Ingo; Chhatbar, Chintan; Ghita, Luca; Kalinke, Ulrich; Löscher, Wolfgang; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-11-01)
      In the central nervous system (CNS), innate immune surveillance is mainly coordinated by microglia. These CNS resident myeloid cells are assumed to help orchestrate the immune response against infections of the brain. However, their specific role in this process and their interactions with CNS infiltrating immune cells, such as blood-borne monocytes and T cells are only incompletely understood. The recent development of PLX5622, a specific inhibitor of colony-stimulating factor 1 receptor that depletes microglia, allows studying the role of microglia in conditions of brain injury such as viral encephalitis, the most common form of brain infection. Here we used this inhibitor in a model of viral infection-induced epilepsy, in which C57BL/6 mice are infected by a picornavirus (Theiler's murine encephalomyelitis virus) and display seizures and hippocampal damage. Our results show that microglia are required early after infection to limit virus distribution and persistence, most likely by modulating T cell activation. Microglia depletion accelerated the occurrence of seizures, exacerbated hippocampal damage, and led to neurodegeneration in the spinal cord, which is normally not observed in this mouse strain. This study enhances our understanding of the role of microglia in viral encephalitis and adds to the concept of microglia-T cell crosstalk.
    • Regulatory T-Cells Mediate IFN-α-Induced Resistance against Antigen-Induced Arthritis.

      Narendra, Sudeep Chenna; Chalise, Jaya Prakash; Biggs, Sophie; Kalinke, Ulrich; Magnusson, Mattias; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (Frontiers, 2018-01-01)
      CD4 Arthritis was triggered by intra-articular injection of methylated bovine serum albumin (mBSA) in wild-type mice, Foxp3DTReGFP Both control mice and mice devoid of IFNAR-signaling in T helper cells were protected from arthritis by IFN-α. Depletion of T By activating IDO during antigen sensitization, IFN-α activates T
    • Human monocyte-derived macrophages inhibit HCMV spread independent of classical antiviral cytokines.

      Becker, Jennifer; Kinast, Volker; Döring, Marius; Lipps, Christoph; Duran, Veronica; Spanier, Julia; Tegtmeyer, Pia-Katharina; Wirth, Dagmar; Cicin-Sain, Luka; Alcamí, Antonio; Kalinke, Ulrich; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany.; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig. (2018-01-01)
      Infection of healthy individuals with human cytomegalovirus (HCMV) is usually unnoticed and results in life-long latency, whereas HCMV reactivation as well as infection of newborns or immunocompromised patients can cause life-threatening disease. To better understand HCMV pathogenesis we studied mechanisms that restrict HCMV spread. We discovered that HCMV-infected cells can directly trigger plasmacytoid dendritic cells (pDC) to mount antiviral type I interferon (IFN-I) responses, even in the absence of cell-free virus. In contrast, monocyte-derived cells only expressed IFN-I when stimulated by cell-free HCMV, or upon encounter of HCMV-infected cells that already produced cell-free virus. Nevertheless, also in the absence of cell-free virus, i.e., upon co-culture of infected epithelial/endothelial cells and monocyte-derived macrophages (moMΦ) or dendritic cells (moDC), antiviral responses were induced that limited HCMV spread. The induction of this antiviral effect was dependent on cell-cell contact, whereas cell-free supernatants from co-culture experiments also inhibited virus spread, implying that soluble factors were critically needed. Interestingly, the antiviral effect was independent of IFN-γ, TNF-α, and IFN-I as indicated by cytokine inhibition experiments using neutralizing antibodies or the vaccinia virus-derived soluble IFN-I binding protein B18R, which traps human IFN-α and IFN-β. In conclusion, our results indicate that human macrophages and dendritic cells can limit HCMV spread by IFN-I dependent as well as independent mechanisms, whereas the latter ones might be particularly relevant for the restriction of HCMV transmission via cell-to-cell spread.
    • Pulmonale Immunität bei Tuberkulose

      Herzmann, C.; Dallenga, T.; Kalinke, U.
      Tuberculosis is transmitted by inhalation of Mycobacterium tuberculosis-containing aerosols; 75 % of all patients show pulmonary manifestation. Immune responses after exposure that lead to clinical symptoms occur mainly in the respiratory tract and are only poorly understood. In most cases, cells of the innate immune system are believed to control the growth of or eradicate inhaled mycobacteria. However, this cannot be verified in vivo using standard methods. Subsequently, CD4+ and CD8+ T cell-driven adaptive immune responses are induced that attempt to control bacterial growth. The humoral defence appears to be less important. This article gives an overview of the current understanding of pulmonary immune mechanisms during exposure, latent infection, active disease and therapy of tuberculosis. Übersicht Herzmann C et al. Pulmonale Immunität bei … Pneumologie H
    • Type I Interferon Receptor Signaling of Neurons and Astrocytes Regulates Microglia Activation during Viral Encephalitis.

      Chhatbar, Chintan; Detje, Claudia N; Grabski, Elena; Borst, Katharina; Spanier, Julia; Ghita, Luca; Elliott, David A; Jordão, Marta Joana Costa; Mueller, Nora; Sutton, James; Prajeeth, Chittappen K; Gudi, Viktoria; Klein, Michael A; Prinz, Marco; Bradke, Frank; Stangel, Martin; Kalinke, Ulrich; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-10-02)
      In sterile neuroinflammation, a pathological role is proposed for microglia, whereas in viral encephalitis, their function is not entirely clear. Many viruses exploit the odorant system and enter the CNS via the olfactory bulb (OB). Upon intranasal vesicular stomatitis virus instillation, we show an accumulation of activated microglia and monocytes in the OB. Depletion of microglia during encephalitis results in enhanced virus spread and increased lethality. Activation, proliferation, and accumulation of microglia are regulated by type I IFN receptor signaling of neurons and astrocytes, but not of microglia. Morphological analysis of myeloid cells shows that type I IFN receptor signaling of neurons has a stronger impact on the activation of myeloid cells than of astrocytes. Thus, in the infected CNS, the cross talk among neurons, astrocytes, and microglia is critical for full microglia activation and protection from lethal encephalitis.
    • The olfactory epithelium as a port of entry in neonatal neurolisteriosis.

      Pägelow, Dennis; Chhatbar, Chintan; Beineke, Andreas; Liu, Xiaokun; Nerlich, Andreas; van Vorst, Kira; Rohde, Manfred; Kalinke, Ulrich; Förster, Reinhold; Halle, Stephan; Valentin-Weigand, Peter; Hornef, Mathias W; Fulde, Marcus; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-10-15)
      Bacterial infections of the central nervous system (CNS) remain a major cause of mortality in the neonatal population. Commonly used parenteral infection models, however, do not reflect the early course of the disease leaving this critical step of the pathogenesis largely unexplored. Here, we analyzed nasal exposure of 1-day-old newborn mice to Listeria monocytogenes (Lm). We found that nasal, but not intragastric administration, led to early CNS infection in neonate mice. In particular, upon bacterial invasion of the olfactory epithelium, Lm subsequently spread along the sensory neurons entering the brain tissue at the cribriform plate and causing a significant influx of monocytes and neutrophils. CNS infection required listeriolysin for penetration of the olfactory epithelium and ActA, a mediator of intracellular mobility, for translocation into the brain tissue. Taken together, we propose an alternative port of entry and route of infection for neonatal neurolisteriosis and present a novel infection model to mimic the clinical features of late-onset disease in human neonates.
    • Chemokine receptors CCR2 and CX3CR1 regulate viral encephalitis-induced hippocampal damage but not seizures.

      Käufer, Christopher; Chhatbar, Chintan; Bröer, Sonja; Waltl, Inken; Ghita, Luca; Gerhauser, Ingo; Kalinke, Ulrich; Löscher, Wolfgang; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-09-18)
      Viral encephalitis is a major risk factor for the development of seizures, epilepsy, and hippocampal damage with associated cognitive impairment, markedly reducing quality of life in survivors. The mechanisms underlying seizures and hippocampal neurodegeneration developing during and after viral encephalitis are only incompletely understood, hampering the development of preventive treatments. Recent findings suggest that brain invasion of blood-born monocytes may be critically involved in both seizures and brain damage in response to encephalitis, whereas the relative role of microglia, the brain's resident immune cells, in these processes is not clear. CCR2 and CX3CR1 are two chemokine receptors that regulate the responses of myeloid cells, such as monocytes and microglia, during inflammation. We used
    • Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice.

      Koestner, Wolfgang; Spanier, Julia; Klause, Tanja; Tegtmeyer, Pia-K; Becker, Jennifer; Herder, Vanessa; Borst, Katharina; Todt, Daniel; Lienenklaus, Stefan; Gerhauser, Ingo; Detje, Claudia N; Geffers, Robert; Langereis, Martijn A; Vondran, Florian W R; Yuan, Qinggong; van Kuppeveld, Frank J M; Ott, Michael; Staeheli, Peter; Steinmann, Eike; Baumgärtner, Wolfgang; Wacker, Frank; Kalinke, Ulrich; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany (2018-08-01)
      During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-β reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-β responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system.
    • Identification of a Predominantly Interferon-λ-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells.

      Selvakumar, Tharini A; Bhushal, Sudeep; Kalinke, Ulrich; Wirth, Dagmar; Hauser, Hansjörg; Köster, Mario; Hornef, Mathias W; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
      Type I (α and β) and type III (λ) interferons (IFNs) induce the expression of a large set of antiviral effector molecules
    • Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis.

      Borst, Katharina; Frenz, Theresa; Spanier, Julia; Tegtmeyer, Pia-Katharina; Chhatbar, Chintan; Skerra, Jennifer; Ghita, Luca; Namineni, Sukumar; Lienenklaus, Stefan; Köster, Mario; Heikenwaelder, Mathias; Sutter, Gerd; Kalinke, Ulrich; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2017-12-21)
      Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-β induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1 VACV infection induced local IFN-β responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis.
    • Application of light sheet microscopy for qualitative and quantitative analysis of bronchus-associated lymphoid tissue in mice.

      Mzinza, David Twapokera; Fleige, Henrike; Laarmann, Kristin; Willenzon, Stefanie; Ristenpart, Jasmin; Spanier, Julia; Sutter, Gerd; Kalinke, Ulrich; Valentin-Weigand, Peter; Förster, Reinhold; TWINCORE, Zentrum für experimentelle uns klinische Ifektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-02-12)
      Bronchus-associated lymphoid tissue (BALT) develops at unpredictable locations around lung bronchi following pulmonary inflammation. The formation and composition of BALT have primarily been investigated by immunohistology that, due to the size of the invested organ, is usually restricted to a limited number of histological sections. To assess the entire BALT of the lung, other approaches are urgently needed. Here, we introduce a novel light sheet microscopy-based approach for assessing lymphoid tissue in the lung. Using antibody staining of whole lung lobes and optical clearing by organic solvents, we present a method that allows in-depth visualization of the entire bronchial tree, the lymphatic vasculature and the immune cell composition of the induced BALT. Furthermore, three-dimensional analysis of the entire lung allows the qualitative and quantitative enumeration of the induced BALT. Using this approach, we show that a single intranasal application of the replication-deficient poxvirus MVA induces BALT that constitutes up to 8% of the entire lung volume in mice deficient in CCR7, in contrast to wild type mice (WT). Furthermore, BALT induced by heat-inactivated E. coli is dominated by a pronounced T cell infiltration in Cxcr5-deficient mice, in contrast to WT mice.Cellular and Molecular Immunology advance online publication, 12 February 2018; doi:10.1038/cmi.2017.150.
    • Type I Interferon Signaling Is Required for CpG-Oligodesoxynucleotide-Induced Control of Leishmania major, but Not for Spontaneous Cure of Subcutaneous Primary or Secondary L. major Infection.

      Schleicher, Ulrike; Liese, Jan; Justies, Nicole; Mischke, Thomas; Haeberlein, Simone; Sebald, Heidi; Kalinke, Ulrich; Weiss, Siegfried; Bogdan, Christian; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018)
      We previously showed that in mice infected with Leishmania major type I interferons (IFNs) initiate the innate immune response to the parasite at day 1 and 2 of infection. Here, we investigated which type I IFN subtypes are expressed during the first 8 weeks of L. major infection and whether type I IFNs are essential for a protective immune response and clinical cure of the disease. In self-healing C57BL/6 mice infected with a high dose of L. major, IFN-α4, IFN-α5, IFN-α11, IFN-α13, and IFN-β mRNA were most prominently regulated during the course of infection. In C57BL/6 mice deficient for IFN-β or the IFN-α/β-receptor chain 1 (IFNAR1), development of skin lesions and parasite loads in skin, draining lymph node, and spleen was indistinguishable from wild-type (WT) mice. In line with the clinical findings, C57BL/6 IFN-β-/-, IFNAR1-/-, and WT mice exhibited similar mRNA expression levels of IFN-γ, interleukin (IL)-4, IL-12, IL-13, inducible nitric oxide synthase, and arginase 1 during the acute and late phase of the infection. Also, myeloid dendritic cells from WT and IFNAR1-/- mice produced comparable amounts of IL-12p40/p70 protein upon exposure to L. major in vitro. In non-healing BALB/c WT mice, the mRNAs of IFN-α subtypes (α2, α4, α5, α6, and α9) were rapidly induced after high-dose L. major infection. However, genetic deletion of IFNAR1 or IFN-β did not alter the progressive course of infection seen in WT BALB/c mice. Finally, we tested whether type I IFNs and/or IL-12 are required for the prophylactic effect of CpG-oligodesoxynucleotides (ODN) in BALB/c mice. Local and systemic administration of CpG-ODN 1668 protected WT and IFN-β-/- mice equally well from progressive leishmaniasis. By contrast, the protective effect of CpG-ODN 1668 was lost in BALB/c IFNAR1-/- (despite a sustained suppression of IL-4) and in BALB/c IL-12p35-/- mice. From these data, we conclude that IFN-β and IFNAR1 signaling are dispensable for a curative immune response to L. major in C57BL/6 mice and irrelevant for disease development in BALB/c mice, whereas IL-12 and IFN-α subtypes are essential for the disease prevention by CpG-ODNs in this mouse strain.
    • Tolerogenic Transcriptional Signatures of Steady-State and Pathogen-Induced Dendritic Cells.

      Vendelova, Emilia; Ashour, Diyaaeldin; Blank, Patrick; Erhard, Florian; Saliba, Antoine-Emmanuel; Kalinke, Ulrich; Lutz, Manfred B; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018)
      Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host's T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.
    • Macrophage depletion by liposome-encapsulated clodronate suppresses seizures but not hippocampal damage after acute viral encephalitis.

      Waltl, Inken; Käufer, Christopher; Bröer, Sonja; Chhatbar, Chintan; Ghita, Luca; Gerhauser, Ingo; Anjum, Muneeb; Kalinke, Ulrich; Löscher, Wolfgang; TWINCORE, Zentrum für experimentelle uns klinische Ifektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-02)
      Viral encephalitis is a major risk factor for the development of seizures and epilepsy, but the underlying mechanisms are only poorly understood. Mouse models such as viral encephalitis induced by intracerebral infection with Theiler's virus in C57BL/6 (B6) mice allow advancing our understanding of the immunological and virological aspects of infection-induced seizures and their treatment. Previous studies using the Theiler's virus model in B6 mice have indicated that brain-infiltrating inflammatory macrophages and the cytokines released by these cells are key to the development of acute seizures and hippocampal damage in this model. However, approaches used to prevent or reduce macrophage infiltration were not specific, so contribution of other mechanisms could not be excluded. In the present study, we used a more selective and widely used approach for macrophage depletion, i.e., systemic administration of clodronate liposomes, to study the contribution of macrophage infiltration to development of seizures and hippocampal damage. By this approach, almost complete depletion of monocytic cells was achieved in spleen and blood of Theiler's virus infected B6 mice, which was associated with a 70% decrease in the number of brain infiltrating macrophages as assessed by flow cytometry. Significantly less clodronate liposome-treated mice exhibited seizures than liposome controls (P<0.01), but the development of hippocampal damage was not prevented or reduced. Clodronate liposome treatment did not reduce the increased Iba1 and Mac3 labeling in the hippocampus of infected mice, indicating that activated microglia may contribute to hippocampal damage. The unexpected mismatch between occurrence of seizures and hippocampal damage is thought-provoking and suggests that the mechanisms involved in degeneration of specific populations of hippocampal neurons in encephalitis-induced epilepsy are more complex than previously thought.
    • Hematopoietic stem cell gene therapy for IFNγR1 deficiency protects mice from mycobacterial infections.

      Hetzel, Miriam; Mucci, Adele; Blank, Patrick; Nguyen, Ariane Hai Ha; Schiller, Jan; Halle, Olga; Kühnel, Mark-Philipp; Billig, Sandra; Meineke, Robert; Brand, Daniel; Herder, Vanessa; Baumgärtner, Wolfgang; Bange, Franz-Christoph; Goethe, Ralph; Jonigk, Danny; Förster, Reinhold; Gentner, Bernhard; Casanova, Jean-Laurent; Bustamante, Jacinta; Schambach, Axel; Kalinke, Ulrich; Lachmann, Nico; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-02-01)
      Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1orIFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that expressIfnγr1either constitutively or myeloid specifically. Transduction of mouseIfnγr1 -/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity againstMycobacterium aviumandMycobacterium bovisBacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs intoIfnγr1-/-mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.
    • Personalized adoptive immunotherapy for patients with EBV-associated tumors and complications: Evaluation of novel naturally processed and presented EBV-derived T-cell epitopes.

      Bieling, Maren; Tischer, Sabine; Kalinke, Ulrich; Blasczyk, Rainer; Buus, Søren; Maecker-Kolhoff, Britta; Eiz-Vesper, Britta; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-01-12)
      Morbidity and mortality of immunocompromised patients are increased by primary infection with or reactivation of Epstein-Barr virus (EBV), possibly triggering EBV+post-transplant lymphoproliferative disease (PTLD). Adoptive transfer of EBV-specific cytotoxic T cells (EBV-CTLs) promises a non-toxic immunotherapy to effectively prevent or treat these complications. To improve immunotherapy and immunomonitoring this study aimed at identifying and evaluating naturally processed and presented HLA-A*03:01-restricted EBV-CTL epitopes as immunodominant targets. More than 15000 peptides were sequenced from EBV-immortalized B cells transduced with soluble HLA-A*03:01, sorted using different epitope prediction tools and eleven candidates were preselected. T2 and Flex-T peptide-binding and dissociation assays confirmed the stability of peptide-MHC complexes. Their immunogenicity and clinical relevance were evaluated by assessing the frequencies and functionality of EBV-CTLs in healthy donors (n> 10) and EBV+PTLD-patients (n= 5) by multimer staining, Eli- and FluoroSpot assays. All eleven peptides elicited EBV-CTL responses in the donors. Their clinical applicability was determined by small-scale T-cell enrichment using Cytokine Secretion Assay and immunophenotyping. Mixtures of these peptides when added to the EBV Consensus pool revealed enhanced stimulation and enrichment efficacy. These EBV-specific epitopes broadening the repertoire of known targets will improve manufacturing of clinically applicable EBV-CTLs and monitoring of EBV-specific T-cell responses in patients.
    • Type I interferon promotes alveolar epithelial type II cell survival during pulmonary Streptococcus pneumoniae infection and sterile lung injury in mice.

      Maier, Barbara B; Hladik, Anastasiya; Lakovits, Karin; Korosec, Ana; Martins, Rui; Kral, Julia B; Mesteri, Ildiko; Strobl, Birgit; Müller, Mathias; Kalinke, Ulrich; Merad, Miriam; Knapp, Sylvia; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2016)
      Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier.
    • Coadministration of a Plasmid Encoding HIV-1 Gag Enhances the Efficacy of Cancer DNA Vaccines.

      Lambricht, Laure; Vanvarenberg, Kevin; De Beuckelaer, Ans; Van Hoecke, Lien; Grooten, Johan; Ucakar, Bernard; Lipnik, Pascale; Sanders, Niek N; Lienenklaus, Stefan; Préat, Véronique; Vandermeulen, Gaëlle; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2016)
      DNA vaccination holds great promise for the prevention and treatment of cancer and infectious diseases. However, the clinical ability of DNA vaccines is still controversial due to the limited immune response initially observed in humans. We hypothesized that electroporation of a plasmid encoding the HIV-1 Gag viral capsid protein would enhance cancer DNA vaccine potency. DNA electroporation used to deliver plasmids in vivo, induced type I interferons, thereby supporting the activation of innate immunity. The coadministration of ovalbumin (OVA) and HIV-1 Gag encoding plasmids modulated the adaptive immune response. This strategy favored antigen-specific Th1 immunity, delayed B16F10-OVA tumor growth and improved mouse survival in both prophylactic and therapeutic vaccination approaches. Similarly, a prophylactic DNA immunization against the melanoma-associated antigen gp100 was enhanced by the codelivery of the HIV-1 Gag plasmid. The adjuvant effect was not driven by the formation of HIV-1 Gag virus-like particles. This work highlights the ability of both electroporation and the HIV-1 Gag plasmid to stimulate innate immunity for enhancing cancer DNA vaccine immunogenicity and demonstrates interesting tracks for the design of new translational genetic adjuvants to overcome the current limitations of DNA vaccines in humans.
    • Impaired IFNγ-Signaling and Mycobacterial Clearance in IFNγR1-Deficient Human iPSC-Derived Macrophages.

      Neehus, Anna-Lena; Lam, Jenny; Haake, Kathrin; Merkert, Sylvia; Schmidt, Nico; Mucci, Adele; Ackermann, Mania; Schubert, Madline; Happle, Christine; Kühnel, Mark Philipp; Blank, Patrick; Philipp, Friederike; Goethe, Ralph; Jonigk, Danny; Martin, Ulrich; Kalinke, Ulrich; Baumann, Ulrich; Schambach, Axel; Roesler, Joachim; Lachmann, Nico; TWiNCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7, 30625 Hannover, Germany. (2018-01-09)
      Mendelian susceptibility to mycobacterial disease (MSMD) is caused by inborn errors of interferon gamma (IFNγ) immunity and is characterized by severe infections by weakly virulent mycobacteria. Although IFNγ is the macrophage-activating factor, macrophages from these patients have never been studied. We demonstrate the generation of heterozygous and compound heterozygous (iMSMD-cohet) induced pluripotent stem cells (iPSCs) from a single chimeric patient, who suffered from complete autosomal recessive IFNγR1 deficiency and received bone-marrow transplantation. Loss of IFNγR1 expression had no influence on the macrophage differentiation potential of patient-specific iPSCs. In contrast, lack of IFNγR1 in iMSMD-cohet macrophages abolished IFNγ-dependent phosphorylation of STAT1 and induction of IFNγ-downstream targets such as IRF-1, SOCS-3, and IDO. As a consequence, iMSMD-cohet macrophages show impaired upregulation of HLA-DR and reduced intracellular killing of Bacillus Calmette-Guérin. We provide a disease-modeling platform that might be suited to investigate novel treatment options for MSMD and to gain insights into IFNγ signaling in macrophages.