• A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials.

      Susewind, Julia; de Souza Carvalho-Wodarz, Cristiane; Repnik, Urska; Collnot, Eva-Maria; Schneider-Daum, Nicole; Griffiths, Gareth Wyn; Lehr, Claus-Michael; Helmholtz-Institut für Pharmaceutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
      Oral exposure to nanomaterials is a current concern, asking for innovative biological test systems to assess their safety, especially also in conditions of inflammatory disorders. Aim of this study was to develop a 3D intestinal model, consisting of Caco-2 cells and two human immune cell lines, suitable to assess nanomaterial toxicity, in either healthy or diseased conditions. Human macrophages (THP-1) and human dendritic cells (MUTZ-3) were embedded in a collagen scaffold and seeded on the apical side of transwell inserts. Caco-2 cells were seeded on top of this layer, forming a 3D model of the intestinal mucosa. Toxicity of engineered nanoparticles (NM101 TiO2, NM300 Ag, Au) was evaluated in non-inflamed and inflamed co-cultures, and also compared to non-inflamed Caco-2 monocultures. Inflammation was elicited by IL-1β, and interactions with engineered NPs were addressed by different endpoints. The 3D co-culture showed well preserved ultrastructure and significant barrier properties. Ag NPs were found to be more toxic than TiO2 or Au NPs. But once inflamed with IL-1β, the co-cultures released higher amounts of IL-8 compared to Caco-2 monocultures. However, the cytotoxicity of Ag NPs was higher in Caco-2 monocultures than in 3D co-cultures. The naturally higher IL-8 production in the co-cultures was enhanced even further by the Ag NPs. This study shows that it is possible to mimic inflamed conditions in a 3D co-culture model of the intestinal mucosa. The fact that it is based on three easily available human cell lines makes this model valuable to study the safety of nanomaterials in the context of inflammation.
    • Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.

      Nafee, Noha; Husari, Ayman; Maurer, Christine K; Lu, Cenbin; de Rossi, Chiara; Steinbach, Anke; Hartmann, Rolf W; Lehr, Claus-Michael; Schneider, Marc (2014-10-28)
      Cystic fibrosis (CF) is a genetic disease mainly manifested in the respiratory tract. Pseudomonas aeruginosa (P. aeruginosa) is the most common pathogen identified in cultures of the CF airways, however, its eradication with antibiotics remains challenging as it grows in biofilms that counterwork human immune response and dramatically decrease susceptibility to antibiotics. P. aeruginosa regulates pathogenicity via a cell-to-cell communication system known as quorum sensing (QS) involving the virulence factor (pyocyanin), thus representing an attractive target for coping with bacterial pathogenicity. The first in vivo potent QS inhibitor (QSI) was recently developed. Nevertheless, its lipophilic nature might hamper its penetration of non-cellular barriers such as mucus and bacterial biofilms, which limits its biomedical application. Successful anti-infective inhalation therapy necessitates proper design of a biodegradable nanocarrier allowing: 1) high loading and prolonged release, 2) mucus penetration, 3) effective pulmonary delivery, and 4) maintenance of the anti-virulence activity of the QSI. In this context, various pharmaceutical lipids were used to prepare ultra-small solid lipid nanoparticles (us-SLNs) by hot melt homogenization. Plain and QSI-loaded SLNs were characterized in terms of colloidal properties, drug loading, in vitro release and acute toxicity on Calu-3 cells. Mucus penetration was studied using a newly-developed confocal microscopy technique based on 3D-time-lapse imaging. For pulmonary application, nebulization efficiency of SLNs and lung deposition using next generation impactor (NGI) were performed. The anti-virulence efficacy was investigated by pyocyanin formation in P. aeruginosa cultures. Ultra-small SLNs (<100nm diameter) provided high encapsulation efficiency (68-95%) according to SLN composition, high burst in phosphate buffer saline compared to prolonged release of the payload over >8h in simulated lung fluid with minor burst. All types and concentrations of plain and QSI-loaded SLNs maintained the viability of Calu-3 cells. 3D time-lapse confocal imaging proved the ability of SLNs to penetrate into artificial sputum model. SLNs were efficiently nebulized; NGI experiments revealed their deposition in the bronchial region. Overall, nanoencapsulated QSI showed up to sevenfold superior anti-virulence activity to the free compound. Most interestingly, the plain SLNs exhibited anti-virulence properties themselves, which was shown to be related to anti-virulence effects of the emulsifiers used. These startling findings represent a new perspective of ultimate significance in the area of nano-based delivery of novel anti-infectives.
    • Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

      Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
      The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
    • Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part I: model characterisation.

      Hittinger, Marius; Janke, Julia; Huwer, Hanno; Scherließ, Regina; Schneider-Daum, Nicole; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland,Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-09)
      The development of new formulations for pulmonary drug delivery is a challenge on its own. New in vitro models which address the lung are aimed at predicting and optimising the quality, efficacy and safety of inhaled drugs, to facilitate the more rapid translation of such products into the clinic. Reducing the complexity of the in vivo situation requires that such models reproducibly reflect essential physiological factors in vitro. The choice of cell types, culture conditions and the experimental set-up, can affect the outcome and the relevance of a study. In the alveolar space of the lung, epithelial cells and alveolar macrophages are the most important cell types, forming an efficient cellular barrier to aerosols. Our aim was to mimic this barrier with primary human alveolar cells. Cell densities of alveolar macrophages and epithelial cells, isolated from the same human donor, were optimised, with a focus on barrier properties. The combination of 300,000 epithelial cells/cm² together with 100,000 macrophages/cm² showed a functional barrier (transepithelial electrical resistance > 500Ω.cm²). This cell model was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures. The functionality of the in vitro system was investigated with spray-dried fluorescently labelled poly(lactic-co-glycolic) acid particles loaded with ovalbumin as a model drug.
    • Autologous co-culture of primary human alveolar macrophages and epithelial cells for investigating aerosol medicines. Part II: evaluation of IL-10-loaded microparticles for the treatment of lung inflammation.

      Hittinger, Marius; Mell, Nico Alexander; Huwer, Hanno; Loretz, Brigitta; Schneider-Daum, Nicole; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland,Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-09)
      Acute respiratory distress syndrome is linked to inflammatory processes in the human lung. The aim of this study was to mimic in vitro the treatment of lung inflammation by using a cell-based human autologous co-culture model. As a potential trial medication, we developed a pulmonary dry powder formulation loaded with interleukin-10 (IL-10), a potent anti-inflammatory cytokine. The inflammatory immune response was stimulated by lipopolysaccharide. The co-culture was combined with the Pharmaceutical Aerosol Deposition Device on Cell Cultures )PADDOCC), to deposit the IL-10-loaded microparticles on the inflamed co-culture model at the air-liquid interface. This treatment significantly reduced the secretion of interleukin-6 and tumour necrosis factor, as compared to the deposition of placebo (unloaded) particles. Our results show that the alveolar co-culture model, in combination with a deposition device such as the PADDOCC, may serve as a powerful tool for testing the safety and efficacy of dry powder formulations for pulmonary drug delivery.
    • The bacterial cell envelope as delimiter of anti-infective bioavailability - An in vitro permeation model of the Gram-negative bacterial inner membrane.

      Graef, Florian; Vukosavljevic, Branko; Michel, Jean-Philippe; Wirth, Marius; Ries, Oliver; De Rossi, Chiara; Windbergs, Maike; Rosilio, Véronique; Ducho, Christian; Gordon, Sarah; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
      Gram-negative bacteria possess a unique and complex cell envelope, composed of an inner and outer membrane separated by an intermediate cell wall-containing periplasm. This tripartite structure acts intrinsically as a significant biological barrier, often limiting the permeation of anti-infectives, and so preventing such drugs from reaching their target. Furthermore, identification of the specific permeation-limiting envelope component proves difficult in the case of many anti-infectives, due to the challenges associated with isolation of individual cell envelope structures in bacterial culture. The development of an in vitro permeation model of the Gram-negative inner membrane, prepared by repeated coating of physiologically-relevant phospholipids on Transwell®filter inserts, is therefore reported, as a first step in the development of an overall cell envelope model. Characterization and permeability investigations of model compounds as well as anti-infectives confirmed the suitability of the model for quantitative and kinetically-resolved permeability assessment, and additionally confirmed the importance of employing bacteria-specific base materials for more accurate mimicking of the inner membrane lipid composition - both advantages compared to the majority of existing in vitro approaches. Additional incorporation of further elements of the Gram-negative bacterial cell envelope could ultimately facilitate model application as a screening tool in anti-infective drug discovery or formulation development.
    • Bacteriomimetic invasin-functionalized nanocarriers for intracellular delivery.

      Labouta, Hagar Ibrahim; Menina, Sara; Kochut, Annika; Gordon, Sarah; Geyer, Rebecca; Dersch, Petra; Lehr, Claus-Michael; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2015-12-28)
      Intracellular bacteria invade mammalian cells to establish an infectious niche. The current work models adhesion and subsequent internalization strategy of pathogenic bacteria into mammalian cells to design a bacteriomimetic bioinvasive delivery system. We report on the surface functionalization of liposomes with a C-terminal fragment of invasin (InvA497), an invasion factor in the outer membrane of Yersinia pseudotuberculosis. InvA497-functionalized liposomes adhere to mammalian epithelial HEp-2 cell line at different infection stages with a significantly higher efficiency than liposomes functionalized with bovine serum albumin. Covalent attachment of InvA497 results in higher cellular adhesion than liposomes with physically adsorbed InvA497 with non-specific surface protein alignment. Uptake studies in HEp-2 cells indicate active internalization of InvA497-functionalized liposomes via β1-integrin receptor-mediated uptake mechanism mimicking the natural invasion strategy of Y. pseudotuberculosis. Uptake studies in Caco-2 cells at different polarization states demonstrate specific targeting of the InvA497-functionalized liposomes to less polarized cells reflecting the status of inflamed cells. Moreover, when loaded with the anti-infective agent gentamicin and applied to HEp-2 cells infected with Y. pseudotuberculosis, InvA497-functionalized liposomes are able to significantly reduce the infection load relative to non-functionalized drug-loaded liposomes. This indicates a promising application of such a bacteriomimetic system for drug delivery to intracellular compartments.
    • Barriers and motivations for non-invasive drug delivery.

      Loretz, Brigitta; Schneider-Daum, Nicole; Windbergs, Maike; Schaefer, Ulrich; Schneider, Marc; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1,66123 Saarbrücken, Germany. (2017-09)
    • Biodegradable starch derivatives with tunable charge density-synthesis, characterization, and transfection efficiency.

      Thiele, Carolin; Loretz, Brigitta; Lehr, Claus Michael; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016-10-03)
      Regioselective oxidation of water-soluble starch and conversion with alkyl diamines resulted in defined cationic starch derivatives. Those were assessed in their potential for polyplex formation, biocompatibility, and transfection efficacy. The new polymers have the advantage of being biodegradable, being not cytotoxic at rather high concentrations (LC50 > 400 μg/ml) for C2 substitution, and reach transfection efficiencies comparable to commercial transfection reagents. The polymer with the highest transfection efficacy is a C12 substituted polymer (degree of substitution = 30 %) at N/P 3. The LC50 value of that highly modified polymer is still one order of magnitude lower than that of PEI 25 kDa.
    • Biological barriers - Advanced drug delivery, in vitro modelling, and their implications for infection research.

      Schneider, Marc; Loretz, Brigitta; Windbergs, Maike; Schneider-Daum, Nicole; Schaefer, Ulrich F; Lehr, Claus-Michael; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany. (2015-09)
    • Calcifediol-loaded liposomes for local treatment of pulmonary bacterial infections.

      Castoldi, Arianna; Herr, Christian; Niederstraßer, Julia; Labouta, Hagar Ibrahim; Melero, Ana; Gordon, Sarah; Schneider-Daum, Nicole; Bals, Robert; Lehr, Claus Michael; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2017-09)
      The influence of vitamin D3 and its metabolites calcifediol (25(OH)D) and calcitriol on immune regulation and inflammation is well described, and raises the question of potential benefit against bacterial infections. In the current study, 25(OH)D was encapsulated in liposomes to enable aerosolisation, and tested for the ability to prevent pulmonary infection by Pseudomonas aeruginosa. Prepared 25(OH)D-loaded liposomes were nanosized and monodisperse, with a negative surface charge and a 25(OH)D entrapment efficiency of approximately 23%. Jet nebulisation of liposomes was seen to yield an aerosol suitable for tracheo-bronchial deposition. Interestingly, 25(OH)D in either liposomes or ethanolic solution had no effect on the release of the proinflammatory cytokine KC from Pseudomonas-infected murine epithelial cells (LA-4); treatment of infected, human bronchial 16-HBE cells with 25(OH)D liposomes however resulted in a significant reduction in bacterial survival. Together with the importance of selecting an application-appropriate in vitro model, the current study illustrates the feasibility and practicality of employing liposomes as a means to achieve 25(OH)D lung deposition. 25(OH)D-loaded liposomes further demonstrated promising effects regarding prevention of Pseudomonas infection in human bronchial epithelial cells.
    • Calcium Phosphate System for Gene Delivery: Historical Background and Emerging Opportunities.

      Mostaghaci, Babak; Loretz, Brigitta; Lehr, Claus-Michael; Helmholtz Institut f?r Pharmazeutische Forschung Saarland, Universit?tscampus E8.1, 66123 Saarbr?cken, Germany. (2016)
      Calcium phosphate system has been used widely in in vitro gene delivery for almost four decades. Excellent biocompatibility and simple application have motivated the researchers to always consider this system in their transfection experiments. However, there was a major drawback regarding the low transfection efficiency of calcium phosphate. Hence, there have been many efforts in order to increase the gene delivery potential of this system. In this paper, the application of calcium phosphate in gene delivery is introduced. Moreover, the recent progresses in the application of calcium phosphate in the delivery of (oligo)nucleotides and different approaches to improve the properties of this system are reviewed.
    • Cellular delivery of polynucleotides by cationic cyclodextrin polyrotaxanes.

      Dandekar, Prajakta; Jain, Ratnesh; Keil, Manuel; Loretz, Brigitta; Muijs, Leon; Schneider, Marc; Auerbach, Dagmar; Jung, Gregor; Lehr, Claus-Michael; Wenz, Gerhard; Department of Drug Delivery, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz-Center for Infection Research (HZI), Saarland University, D-66123 Saarbrücken, Germany. (2012-12-28)
      Cationic polyrotaxanes, obtained by temperature activated threading of cationic cyclodextrin derivatives onto water-soluble cationic polymers (ionenes), form metastable nanometric polyplexes with pDNA and combinations of siRNA with pDNA. Because of their low toxicity, the polyrotaxane polyplexes constitute a very interesting system for the transfection of polynucleotides into mammalian cells. The complexation of Cy3-labeled siRNA within the polyplexes was demonstrated by fluorescence correlation spectroscopy. The uptake of the polyplexes (red) was imaged by confocal fluorescence microscopy using the A549 cell line as a model (blue: nuclei, green: membranes). The results prove the potential of polyrotaxanes for further investigations involving knocking down genes of therapeutic interest.
    • Characterization and evaluation of β-glucan formulations as injectable implants for protein and peptide delivery.

      Jacobs, Simone; Bunt, Craig R; Wu, Zimei; Lehr, Claus-Michael; Rupenthal, Ilva D; Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany. (2012-11)
      Injectable implants are biodegradable, syringeable formulations that are injected as liquids, but form a gel inside the body due to a change in pH, ions or temperature.
    • Characterization of Microvesicles Released from Human Red Blood Cells.

      Nguyen, Duc Bach; Thuy Ly, Thi Bich; Wesseling, Mauro Carlos; Hittinger, Marius; Torge, Afra; Devitt, Andrew; Perrie, Yvonne; Bernhardt, Ingolf; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland 9 University, 66123 Saarbrücken, Germany. (2016)
      Extracellular vesicles (EVs) are spherical fragments of cell membrane released from various cell types under physiological as well as pathological conditions. Based on their size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies. Recently, the release of MVs from human red blood cells (RBCs) under different conditions has been reported. MVs are released by outward budding and fission of the plasma membrane. However, the outward budding process itself, the release of MVs and the physical properties of these MVs have not been well investigated. The aim of this study is to investigate the formation process, isolation and characterization of MVs released from RBCs under conditions of stimulating Ca2+ uptake and activation of protein kinase C.
    • Chemical imaging of drug delivery systems with structured surfaces-a combined analytical approach of confocal raman microscopy and optical profilometry.

      Kann, Birthe; Windbergs, Maike; Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus A4.1, 66123 Saarbruecken, Germany. (2013-04)
      Confocal Raman microscopy is an analytical technique with a steadily increasing impact in the field of pharmaceutics as the instrumental setup allows for nondestructive visualization of component distribution within drug delivery systems. Here, the attention is mainly focused on classic solid carrier systems like tablets, pellets, or extrudates. Due to the opacity of these systems, Raman analysis is restricted either to exterior surfaces or cross sections. As Raman spectra are only recorded from one focal plane at a time, the sample is usually altered to create a smooth and even surface. However, this manipulation can lead to misinterpretation of the analytical results. Here, we present a trendsetting approach to overcome these analytical pitfalls with a combination of confocal Raman microscopy and optical profilometry. By acquiring a topography profile of the sample area of interest prior to Raman spectroscopy, the profile height information allowed to level the focal plane to the sample surface for each spectrum acquisition. We first demonstrated the basic principle of this complementary approach in a case study using a tilted silica wafer. In a second step, we successfully adapted the two techniques to investigate an extrudate and a lyophilisate as two exemplary solid drug carrier systems. Component distribution analysis with the novel analytical approach was neither hampered by the curvature of the cylindrical extrudate nor the highly structured surface of the lyophilisate. Therefore, the combined analytical approach bears a great potential to be implemented in diversified fields of pharmaceutical sciences.
    • Chemically modified hCFTR mRNAs recuperate lung function in a mouse model of cystic fibrosis.

      Haque, A K M Ashiqul; Dewerth, Alexander; Antony, Justin S; Riethmüller, Joachim; Schweizer, Georg R; Weinmann, Petra; Latifi, Ngadhnjim; Yasar, Hanzey; Pedemonte, Nicoletta; Sondo, Elvira; Weidensee, Brian; Ralhan, Anjali; Laval, Julie; Schlegel, Patrick; Seitz, Christian; Loretz, Brigitta; Lehr, Claus-Michael; Handgretinger, Rupert; Kormann, Michael S D; HIPS, Helmholtz-Institut füt Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Nature publishing group, 2018-11-13)
      Gene therapy has always been a promising therapeutic approach for Cystic Fibrosis (CF). However, numerous trials using DNA or viral vectors encoding the correct protein resulted in a general low efficacy. In the last years, chemically modified messenger RNA (cmRNA) has been proven to be a highly potent, pulmonary drug. Consequently, we first explored the expression, function and immunogenicity of human (h)CFTR encoded by cmRNA
    • Ciprofloxacin-loaded PLGA nanoparticles against Cystic Fibrosis P. aeruginosa Lung Infections.

      Günday Türeli, Nazende; Torge, Afra; Juntke, Jenny; Schwarz, Bianca C; Schneider-Daum, Nicole; Türeli, Akif Emre; Lehr, Claus-Michael; Schneider, Marc; Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-05-02)
      Current pulmonary treatments against Pseudomonasaeruginosa infections in cystic fibrosis (CF) lung suffer from deactivation of the drug and immobilization in thick and viscous biofilm/mucus blend, along with the general antibiotic resistance. Administration of nanoparticles (NPs) with high antibiotic load capable of penetrating the tight mesh of biofilm/mucus can be an advent to overcome the treatment bottlenecks. Biodegradable and biocompatible polymer nanoparticles efficiently loaded with ciprofloxacin complex offer a solution for emerging treatment strategies. NPs were prepared under controlled conditions by utilizing MicroJet Reactor (MJR) to yield a particle size of 190.4±28.6 nm with 0.089 PDI. Encapsulation efficiency of the drug was 79% resulting in a loading of 14%. Release was determined to be controlled and medium-independent in PBS, PBS+0.2% Tween 80 and simulated lung fluid. Cytotoxicity assays with Calu3 cells and CF bronchial epithelial cells (CFBE41o(-)) indicated that complex loaded PLGA NPs were non-toxic at concentrations >MICcipro against lab strains of the bacteria. Antibacterial activity tests revealed enhanced activity when applied as nanoparticles. NPs' colloidal stability in mucus was proven. Notably, a decrease in mucus turbidity was observed upon incubation with NPs. Herewith, ciprofloxacin complex loaded PLGA NPs are introduced as promising pulmonary nano drug delivery systems against P.aeruginosa infections in CF lung.
    • Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines.

      Kletting, Stephanie; Barthold, Sarah; Repnik, Urska; Griffiths, Gareth; Loretz, Brigitta; Schneider-Daum, Nicole; de Souza Carvalho-Wodarz, Cristiane; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer Nature, 2018-01-01)
      The air-blood barrier is mainly composed of alveolar epithelial cells and macrophages. Whereas the epithelium acts as a diffusional barrier, macrophages represent an immunological barrier, in particular for larger molecules and nanoparticles. This paper describes a new co-culture of human cell lines representing both cell types. Acquiring, culturing and maintaining primary alveolar epithelial cells presents significant logistical and technical difficulties. The recently established human alveolar epithelial lentivirus immortalized cell line, hAELVi, when grown on permeable filters, forms monolayers with high functional and morphological resemblance to alveolar type I cells. To model alveolar macrophages, the human cell line THP-1 was seeded on pre-formed hAELVi monolayers. The co-culture was characterized regarding cellular morphology, viability and barrier function. Macrophages were homogenously distributed on the epithelium and could be kept in co-culture for up to 7 days. Transmission electron microscopy showed loose contact between THP-1 and hAELVi cells. When grown at air liquid interface, both cells were covered with extracellular matrix-like structure, which was absent in THP-1 mono-culture. In co-culture with macrophages, hAELVi cells displayed similar, sometimes even higher, transepithelial electrical resistance than in mono-cultures. When exposed to silver and starch nanoparticles, hAELVi mono-cultures were more tolerant to the particles than THP-1 mono-cultures. Viability in the co-culture was similar to that of hAELVi mono-cultures. Transport studies with sodium fluorescein in the presence/absence of EDTA proved that the co-culture acts as functional diffusion barrier. These data demonstrate that hAELVi-/THP-1 co-cultures represent a promising model for safety and permeability studies of inhaled chemicals, drugs and nanoparticles.
    • Combining MucilAir™ and Vitrocell Powder Chamber for the In Vitro Evaluation of Nasal Ointments in the Context of Aerosolized Pollen.

      Metz, Julia; Knoth, Katharina; Groß, Henrik; Lehr, Claus-Michael; Stäbler, Carolin; Bock, Udo; Hittinger, Marius; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-05-10)
      Hay fever is notoriously triggered when nasal mucosa is exposed to allergenic pollen. One possibility to overcome this pollen exposure may be the application of an ointment with physical protective effects. In this context, we have investigated Bepanthen Eye and Nose Ointment and the ointment basis petrolatum as reference while using contemporary in vitro techniques. Pollen from false ragweed () was used as an allergy-causing model deposited as aerosol using the Vitrocell Powder Chamber (VPC) on Transwell inserts, while being coated with either Bepanthen Eye and Nose Ointment and petrolatum. No pollen penetration into ointments was observed upon confocal scanning laser microscopy during an incubation period of 2 h at 37 &deg;C. The cellular response was further investigated by integrating the MucilAir&trade; cell system in the VPC and by applying pollen to Bepanthen Eye and Nose Ointment covered cell cultures. For comparison, MucilAir&trade; were stimulated by lipopolysaccharides (LPS). No increased cytokine release of IL-6, TNF-&alpha;, or IL-8 was found after 4 h of pollen exposure, which demonstrates the safety of such ointments. Since nasal ointments act as a physical barrier against pollen, such preparations might support the prevention and management of hay fever.