Recent Submissions

  • Self-resistance guided genome mining uncovers new topoisomerase inhibitors from myxobacteria.

    Panter, Fabian; Krug, Daniel; Baumann, Sascha; Müller, Rolf; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-06-07)
    There is astounding discrepancy between the genome-inscribed production capacity and the set of known secondary metabolite classes from many microorganisms as detected under laboratory cultivation conditions. Genome-mining techniques are meant to fill this gap, but in order to favor discovery of structurally novel as well as bioactive compounds it is crucial to amend genomics-based strategies with selective filtering principles. In this study, we followed a self-resistance guided approach aiming at the discovery of inhibitors of topoisomerase, known as valid target in both cancer and antibiotic therapy. A common host self-defense mechanism against such inhibitors in bacteria is mediated by so-called pentapeptide repeat proteins (PRP). Genes encoding the biosynthetic machinery for production of an alleged topoisomerase inhibitor were found on the basis of their collocation adjacent to a predicted PRP in the genome of the myxobacterium
  • Multi-Omics and Targeted Approaches to Determine the Role of Cellular Proteases in Protein Secretion.

    Busche, Tobias; Tsolis, Konstantinos C; Koepff, Joachim; Rebets, Yuriy; Rückert, Christian; Hamed, Mohamed B; Bleidt, Arne; Wiechert, Wolfgang; Lopatniuk, Mariia; Yousra, Ahmed; Anné, Jozef; Karamanou, Spyridoula; Oldiges, Marco; Kalinowski, Jörn; Luzhetskyy, Andriy; Economou, Anastassios; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-01-01)
  • A fluorescence anisotropy assay to discover and characterize ligands targeting the maytansine site of tubulin.

    Menchon, Grégory; Prota, Andrea E; Lucena-Agell, Daniel; Bucher, Pascal; Jansen, Rolf; Irschik, Herbert; Müller, Rolf; Paterson, Ian; Díaz, J Fernando; Altmann, Karl-Heinz; Steinmetz, Michel O; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-29)
    Microtubule-targeting agents (MTAs) like taxol and vinblastine are among the most successful chemotherapeutic drugs against cancer. Here, we describe a fluorescence anisotropy-based assay that specifically probes for ligands targeting the recently discovered maytansine site of tubulin. Using this assay, we have determined the dissociation constants of known maytansine site ligands, including the pharmacologically active degradation product of the clinical antibody-drug conjugate trastuzumab emtansine. In addition, we discovered that the two natural products spongistatin-1 and disorazole Z with established cellular potency bind to the maytansine site on β-tubulin. The high-resolution crystal structures of spongistatin-1 and disorazole Z in complex with tubulin allowed the definition of an additional sub-site adjacent to the pocket shared by all maytansine-site ligands, which could be exploitable as a distinct, separate target site for small molecules. Our study provides a basis for the discovery and development of next-generation MTAs for the treatment of cancer.
  • Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Infection.

    Ferrer-Navarro, Mario; Strehlitz, Anja; Medina, Eva; Vila, Jordi
    Infections by are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in infection.
  • Discovery of recombinases enables genome mining of cryptic biosynthetic gene clusters in Burkholderiales species.

    Wang, Xue; Zhou, Haibo; Chen, Hanna; Jing, Xiaoshu; Zheng, Wentao; Li, Ruijuan; Sun, Tao; Liu, Jiaqi; Fu, Jun; Huo, Liujie; Li, Yue-Zhong; Shen, Yuemao; Ding, Xiaoming; Müller, Rolf; Bian, Xiaoying; Zhang, Youming; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-05-01)
    Bacterial genomes encode numerous cryptic biosynthetic gene clusters (BGCs) that represent a largely untapped source of drugs or pesticides. Mining of the cryptic products is limited by the unavailability of streamlined genetic tools in native producers. Precise genome engineering using bacteriophage recombinases is particularly useful for genome mining. However, recombinases are usually host-specific. The genome-guided discovery of novel recombinases and their transient expression could boost cryptic BGC mining. Herein, we reported a genetic system employing Red recombinases from Burkholderiales strain DSM 7029 for efficient genome engineering in several Burkholderiales species that currently lack effective genetic tools. Using specialized recombinases-assisted in situ insertion of functional promoters, we successfully mined five cryptic nonribosomal peptide synthetase/polyketide synthase BGCs, two of which were silent. Two classes of lipopeptides, glidopeptins and rhizomides, were identified through extensive spectroscopic characterization. This recombinase expression strategy offers utility within other bacteria species, allowing bioprospecting for potentially scalable discovery of novel metabolites with attractive bioactivities.
  • Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition.

    Glatzel, Daniel K; Koeberle, Andreas; Pein, Helmut; Löser, Konstantin; Stark, Anna; Keksel, Nelli; Werz, Oliver; Müller, Rolf; Bischoff, Iris; Fürst, Robert; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-02)
    The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
  • Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola.

    Mulwa, Lucky S; Jansen, Rolf; Praditya, Dimas F; Mohr, Kathrin I; Wink, Joachim; Steinmann, Eike; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-28)
    Two new secondary metabolites, labindole A [2-methyl-3-(2-nitroethyl)-3H-indole] (1) and labindole B [2-methyl-3-(2-nitrovinyl)-3H-indole] (2), were isolated from the myxobacteriumLabilithrixluteola(DSM 27648T). Additionally, four metabolites3,4,5and6already known from other sources were obtained. Their structures were elucidated from high resolution electrospray ionisation mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy data and their relative configuration was assigned based on nuclear Overhauser effect (NOE) and vicinal ¹H-NMR coupling data. The compounds where tested for biological activities; labindoles A (1) and B (2) exhibited significant activity against Hepatitis C Virus, 9H-carbazole (3), 3-chloro-9H-carbazole (4) and 4-hydroxymethyl-quinoline (5) showed antifungal activities. Moreover, compound3had weak to moderate antibacterial activities, while labindoles A (1) and B (2) were devoid of significant antifungal and antibacterial effects.
  • Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum.

    Rupcic, Zeljka; Rascher, Monique; Kanaki, Sae; Köster, Reinhard W; Stadler, Marc; Wittstein, Kathrin; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03-06)
    Basidiomycetes of the genusHericiumare among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion's Mane mushroom (Hericium erinaceus) strain and a strain of the rare species,Hericium flagellum(synonymH. alpestre). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act onBDNF, which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well onNGFexpression, which is consistent with the literature.
  • A set of synthetic versatile genetic control elements for the efficient expression of genes in Actinobacteria.

    Horbal, Lilya; Siegl, Theresa; Luzhetskyy, Andriy; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-01-11)
    The design and engineering of secondary metabolite gene clusters that are characterized by complicated genetic organization, require the development of collections of well-characterized genetic control elements that can be reused reliably. Although a few intrinsic terminators and RBSs are used routinely, their translation and termination efficiencies have not been systematically studied in Actinobacteria. Here, we analyzed the influence of the regions surrounding RBSs on gene expression in these bacteria. We demonstrated that inappropriate RBSs can reduce the expression efficiency of a gene to zero. We developed a genetic device - an in vivo RBS-selector - that allows selection of an optimal RBS for any gene of interest, enabling rational control of the protein expression level. In addition, a genetic tool that provides the opportunity for measurement of termination efficiency was developed. Using this tool, we found strong terminators that lead to a 17-100-fold reduction in downstream expression and are characterized by sufficient sequence diversity to reduce homologous recombination when used with other elements. For the first time, a C-terminal degradation tag was employed for the control of protein stability in Streptomyces. Finally, we describe a collection of regulatory elements that can be used to control metabolic pathways in Actinobacteria.
  • Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria.

    Hoffmann, Thomas; Krug, Daniel; Bozkurt, Nisa; Duddela, Srikanth; Jansen, Rolf; Garcia, Ronald; Gerth, Klaus; Steinmetz, Heinrich; Müller, Rolf; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-02-23)
    Some bacterial clades are important sources of novel bioactive natural products. Estimating the magnitude of chemical diversity available from such a resource is complicated by issues including cultivability, isolation bias and limited analytical data sets. Here we perform a systematic metabolite survey of ~2300 bacterial strains of the order Myxococcales, a well-established source of natural products, using mass spectrometry. Our analysis encompasses both known and previously unidentified metabolites detected under laboratory cultivation conditions, thereby enabling large-scale comparison of production profiles in relation to myxobacterial taxonomy. We find a correlation between taxonomic distance and the production of distinct secondary metabolite families, further supporting the idea that the chances of discovering novel metabolites are greater by examining strains from new genera rather than additional representatives within the same genus. In addition, we report the discovery and structure elucidation of rowithocin, a myxobacterial secondary metabolite featuring an uncommon phosphorylated polyketide scaffold.
  • Draft Genome Sequence and Annotation of the Obligate Bacterial Endosymbiont Caedibacter taeniospiralis, Causative Agent of the Killer Phenotype in Paramecium tetraurelia.

    Zaburannyi, Nestor; Grosser, Katrin; Gasparoni, Gilles; Müller, Rolf; Schrallhammer, Martina; Simon, Martin; Helmholtz Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-01-18)
    Caedibacter taeniospiralis is an obligate endosymbiont living in the cytoplasm of Paramecium tetraureliaC. taeniospiralis causes the so-called killer trait, eliminating intraspecific competitors of its host when released into the medium by the concerted action of the unusual protein structure R-body (refractile body) in addition to an as-yet-unknown toxin.
  • Taxonomic analyses of members of the Streptomyces cinnabarinus cluster, description of Streptomyces cinnabarigriseus sp. nov. and Streptomyces davaonensis sp. nov.

    Landwehr, Wiebke; Kämpfer, Peter; Glaeser, Stefanie P; Rückert, Christian; Kalinowski, Jörn; Blom, Jochen; Goesmann, Alexander; Mack, Matthias; Schumann, Peter; Atasayar, Ewelina; Hahnke, Richard L; Rohde, Manfred; Martin, Karin; Stadler, Marc; Wink, Joachim; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-11)
    Roseoflavin is the only known riboflavin (vitamin B2) analog with antibiotic properties. It is actively taken up by many micro-organisms and targets flavinmononucleotide riboswitches and flavoproteins. It is described as the product of the tentatively named 'Streptomyces davawensis' JCM 4913. Taxonomic analysis of this strain with a polyphasic approach showed that it is very closely related to Streptomyces cinnabarinus (DSM 40467). The two Streptomyces isolates were obtained from different geographical locations (the Philippines and the Kamchatka Peninsula, respectively), their genomes have been sequenced and the question was whether or not the two isolates were representatives of the same species. As we also worked with another isolate of Streptomyces cinnabarinus JS 360, the producer of the cinnabaramides, we wanted to clarify the taxonomic position of the three isolates by using a polyphasic approach. After analysis of the 16S rRNA gene sequence, we found in total 23 species of the genus Streptomyces that showed a similarity higher than 98.5 % to the three strains. We showed that 'S. davawensis' JCM 4913 and S. cinnabarinus DSM 40467 were very closely related but belong to two different species. Hence, we validate 'S. davawensis' as Streptomyces davaonensis sp. nov. with the type strain JCM 4913T (=DSM 101723T). In addition, the cinnabaramide producer can be clearly differentiated from S. davaonensis and this isolate is described as Streptomyces cinnabarigriseus sp. nov. with strain JS360T (=NCCB 100590T=DSM 101724T) as the type strain.
  • ExoCET: exonuclease in vitro assembly combined with RecET recombination for highly efficient direct DNA cloning from complex genomes.

    Wang, Hailong; Li, Zhen; Jia, Ruonan; Yin, Jia; Li, Aiying; Xia, Liqiu; Yin, Yulong; Müller, Rolf; Fu, Jun; Stewart, A Francis; Zhang, Youming; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-12-12)
    The exponentially increasing volumes of DNA sequence data highlight the need for new DNA cloning methods to explore the new information. Here, we describe 'ExoCET' (Exonuclease Combined with RecET recombination) to directly clone any chosen region from bacterial and mammalian genomes with nucleotide precision into operational plasmids. ExoCET combines in vitro exonuclease and annealing with the remarkable capacity of full length RecET homologous recombination (HR) to retrieve specified regions from genomic DNA preparations. Using T4 polymerase (T4pol) as the in vitro exonuclease for ExoCET, we directly cloned large regions (>50 kb) from bacterial and mammalian genomes, including DNA isolated from blood. Employing RecET HR or Cas9 cleavage in vitro, the directly cloned region can be chosen with nucleotide precision to position, for example, a gene into an expression vector without the need for further subcloning. In addition to its utility for bioprospecting in bacterial genomes, ExoCET presents straightforward access to mammalian genomes for various applications such as region-specific DNA sequencing that retains haplotype phasing, the rapid construction of optimal, haplotypic, isogenic targeting constructs or a new way to genotype that presents advantages over Southern blotting or polymerase chain reaction. The direct cloning capacities of ExoCET present new freedoms in recombinant DNA technology.
  • Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea.

    Wu, Hang; Wang, Yansheng; Yuan, Li; Mao, Yongrong; Wang, Weiwei; Zhu, Lin; Wu, Panpan; Fu, Chengzhang; Müller, Rolf; Weaver, David T; Zhang, Lixin; Zhang, Buchang; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1,66123 Saarbrücken, Germany. (2016-03)
    Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI, the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ3446 and WBΔ3446Δ3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE. When cultured in a 5 L fermentor, erythromycin A of WBΔ3446 and WBΔ3446Δ3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.
  • First Bispecific Inhibitors of the Epidermal Growth Factor Receptor Kinase and the NF-κB Activity As Novel Anticancer Agents.

    Hamed, Mostafa M; Darwish, Sarah S; Herrmann, Jennifer; Abadi, Ashraf H; Engel, Matthias; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1,66123 Saarbrücken, Germany. (2017-04-13)
    The activation of the NF-κB transcription factor is a major adaptive response induced upon treatment with EGFR kinase inhibitors, leading to the emergence of resistance in nonsmall cell lung cancer and other tumor types. To suppress this survival mechanism, we developed new thiourea quinazoline derivatives that are dual inhibitors of both EGFR kinase and the NF-κB activity. Optimization of the hit compound, identified in a NF-κB reporter gene assay, led to compound 9b, exhibiting a cellular IC50 for NF-κB inhibition of 0.3 μM while retaining a potent EGFR kinase inhibition (IC50 = 60 nM). The dual inhibitors showed a higher potency than gefitinib to inhibit cell growth of EGFR-overexpressing tumor cell lines in vitro and in a xenograft model in vivo, while no signs of toxicity were observed. An investigation of the molecular mechanism of NF-κB suppression revealed that the dual inhibitors depleted the transcriptional coactivator CREB-binding protein from the NF-κB complex in the nucleus.
  • Sonogashira diversification of unprotected halotryptophans, halotryptophan containing tripeptides; and generation of a new to nature bromo-natural product and its diversification in water.

    Corr, M J; Sharma, S V; Pubill-Ulldemolins, C; Bown, R T; Poirot, P; Smith, D R M; Cartmell, C; Abou Fayad, A; Goss, R J M; Hel,holtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-03-01)
    The blending together of synthetic chemistry with natural product biosynthesis represents a potentially powerful approach to synthesis; to enable this, further synthetic tools and methodologies are needed. To this end, we have explored the first Sonogashira cross-coupling to halotryptophans in water. Broad reaction scope is demonstrated and we have explored the limits of the scope of the reaction. We have demonstrated this methodology to work excellently in the modification of model tripeptides. Furthermore, through precursor directed biosynthesis, we have generated for the first time a new to nature brominated natural product bromo-cystargamide, and demonstrated the applicability of our reaction conditions to modify this novel metabolite.
  • SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017)
    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.
  • Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging.

    Wagner, Stefanie; Hauck, Dirk; Hoffmann, Michael; Sommer, Roman; Joachim, Ines; Müller, Rolf; Imberty, Anne; Varrot, Annabelle; Titz, Alexander; HIPS, Helmholtz-Institut für pharmazeutische Forchung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-09-28)
    Biofilm formation by pathogenic bacteria is a hallmark of chronic infections. In many cases, lectins play key roles in establishing biofilms. The pathogen Pseudomonas aeruginosa often exhibiting various drug resistances employs its lectins LecA and LecB as virulence factors and biofilm building blocks. Therefore, inhibition of the function of these proteins is thought to have potential in developing "pathoblockers" preventing biofilm formation and virulence. A covalent lectin inhibitor specific to a carbohydrate binding site is described for the first time. Its application in the LecA-specific in vitro imaging of biofilms formed by P. aeruginosa is also reported.
  • The natural product carolacton inhibits folate-dependent C1 metabolism by targeting FolD/MTHFD.

    Fu, Chengzhang; Sikandar, Asfandyar; Donner, Jannik; Zaburannyi, Nestor; Herrmann, Jennifer; Reck, Michael; Wagner-Döbler, Irene; Koehnke, Jesko; Müller, Rolf; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124Braunschweig, Germany. (2017-11-16)
    The natural product carolacton is a macrolide keto-carboxylic acid produced by the myxobacterium Sorangium cellulosum, and was originally described as an antibacterial compound. Here we show that carolacton targets FolD, a key enzyme from the folate-dependent C1 metabolism. We characterize the interaction between bacterial FolD and carolacton biophysically, structurally and biochemically. Carolacton binds FolD with nanomolar affinity, and the crystal structure of the FolD-carolacton complex reveals the mode of binding. We show that the human FolD orthologs, MTHFD1 and MTHFD2, are also inhibited in the low nM range, and that micromolar concentrations of carolacton inhibit the growth of cancer cell lines. As mitochondrial MTHFD2 is known to be upregulated in cancer cells, it may be possible to use carolacton as an inhibitor tool compound to assess MTHFD2 as an anti-cancer target.
  • Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity.

    Lukat, Peer; Katsuyama, Yohei; Wenzel, Silke; Binz, Tina; König, Claudia; Blankenfeldt, Wulf; Brönstrup, Mark; Müller, Rolf; Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-11-01)
    Griselimycins (GMs) are depsidecapeptides with superb anti-tuberculosis activity. They contain up to three (2S,4R)-4-methyl-prolines (4-MePro), of which one blocks oxidative degradation and increases metabolic stability in animal models. The natural congener with this substitution is only a minor component in fermentation cultures. We showed that this product can be significantly increased by feeding the reaction with 4-MePro and we investigated the molecular basis of 4-MePro biosynthesis and incorporation. We identified the GM biosynthetic gene cluster as encoding a nonribosomal peptide synthetase and a sub-operon for 4-MePro formation. Using heterologous expression, gene inactivation, and in vitro experiments, we showed that 4-MePro is generated by leucine hydroxylation, oxidation to an aldehyde, and ring closure with subsequent reduction. The crystal structures of the leucine hydroxylase GriE have been determined in complex with substrates and products, providing insight into the stereospecificity of the reaction.

View more