group leader: PD Dr. Medina

Recent Submissions

  • Changed Expression of Cytoskeleton Proteins During Lung Injury in a Mouse Model of Infection.

    Ferrer-Navarro, Mario; Strehlitz, Anja; Medina, Eva; Vila, Jordi
    Infections by are a major cause of morbidity and mortality worldwide, often causing community-acquired pneumonia, otitis media and also bacteremia and meningitis. Studies on are mainly focused on its virulence or capacity to evade the host immune system, but little is known about the injury caused in lungs during a pneumococcal infection. Herein we investigated this issue comparing the proteome profile of lungs from infected mice with control mice by means of difference gel electrophoresis (DIGE) technology. In order to obtain reliable results three biological replicas were used, and four technical replicas were carried out in each biological replica. Proteomic comparison was performed at two time points: 24 and 48 h post infection. A total of 91 proteins were identified with different abundance. We found important changes in the protein profiles during pneumococcal infection mainly associated with regulation of vesicle-mediated transport, wound healing, and cytoskeleton organization. In conclusion, the results obtained show that the cytoskeleton of the host cell is modified in infection.
  • SCM, the M Protein of Streptococcus canis Binds Immunoglobulin G.

    Bergmann, Simone; Eichhorn, Inga; Kohler, Thomas P; Hammerschmidt, Sven; Goldmann, Oliver; Rohde, Manfred; Fulde, Marcus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017)
    The M protein of Streptococcus canis (SCM) is a virulence factor and serves as a surface-associated receptor with a particular affinity for mini-plasminogen, a cleavage product of the broad-spectrum serine protease plasmin. Here, we report that SCM has an additional high-affinity immunoglobulin G (IgG) binding activity. The ability of a particular S. canis isolate to bind to IgG significantly correlates with a scm-positive phenotype, suggesting a dominant role of SCM as an IgG receptor. Subsequent heterologous expression of SCM in non-IgG binding S. gordonii and Western Blot analysis with purified recombinant SCM proteins confirmed its IgG receptor function. As expected for a zoonotic agent, the SCM-IgG interaction is species-unspecific, with a particular affinity of SCM for IgGs derived from human, cats, dogs, horses, mice, and rabbits, but not from cows and goats. Similar to other streptococcal IgG-binding proteins, the interaction between SCM and IgG occurs via the conserved Fc domain and is, therefore, non-opsonic. Interestingly, the interaction between SCM and IgG-Fc on the bacterial surface specifically prevents opsonization by C1q, which might constitute another anti-phagocytic mechanism of SCM. Extensive binding analyses with a variety of different truncated SCM fragments defined a region of 52 amino acids located in the central part of the mature SCM protein which is important for IgG binding. This binding region is highly conserved among SCM proteins derived from different S. canis isolates but differs significantly from IgG-Fc receptors of S. pyogenes and S. dysgalactiae sub. equisimilis, respectively. In summary, we present an additional role of SCM in the pathogen-host interaction of S. canis. The detailed analysis of the SCM-IgG interaction should contribute to a better understanding of the complex roles of M proteins in streptococcal pathogenesis.
  • Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils.

    Goldmann, Oliver; Beineke, Andreas; Medina, Eva; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunchweig, Germany. (2017-09-23)
    We have previously reported that myeloid-derived suppressor cells (MDSC), which are a heterogeneous population of immunosuppressive immature myeloid cells, expanded during chronic Staphylococcus aureus infection and promoted bacterial persistence by inhibiting effector T cells. Two major MDSC subsets including monocytic MDSCs (M-MDSC) and granulocytic MDSCs (G-MDSC) have been described to date. Here, we identified a new subset of MDSC (Eo-MDSC) in S. aureus-infected mice that phenotypically resembles eosinophils. Eo-MDSC exhibit eosinophilic cytoplasmic granules and express CD11b, the eosinophil marker Syglec-F, variable levels of CCR3 and low levels of IL-5R. Furthermore, Eo-MDSC accumulated at the site of infection and exerted a potent immunosuppressive effect on T cell responses that was mediated by nitric oxide-dependent depletion of L-arginine. Increased in the number of Eo-MDSC by adoptive transfer caused a significant exacerbation of infection in S. aureus-infected mice. This study sheds new light on the heterogeneity and complexity of MDSC during chronic infection.
  • IL-10 Plays Opposing Roles during Staphylococcus aureus Systemic and Localized Infections.

    Leech, John M; Lacey, Keenan A; Mulcahy, Michelle E; Medina, Eva; McLoughlin, Rachel M (2017-03-15)
    IL-10 is a potent anti-inflammatory mediator that plays a crucial role in limiting host immunopathology during bacterial infections by controlling effector T cell activation. Staphylococcus aureus has previously been shown to manipulate the IL-10 response as a mechanism of immune evasion during chronic systemic and biofilm models of infection. In the present study, we demonstrate divergent roles for IL-10 depending on the site of infection. During acute systemic S. aureus infection, IL-10 plays an important protective role and is required to prevent bacterial dissemination and host morbidity by controlling effector T cells and the associated downstream hyperactivation of inflammatory phagocytes, which are capable of host tissue damage. CD19(+)CD11b(+)CD5(+) B1a regulatory cells were shown to rapidly express IL-10 in a TLR2-dependent manner in response to S. aureus, and adoptive transfer of B1a cells was protective during acute systemic infection in IL-10-deficient hosts. In contrast, during localized s.c. infection, IL-10 production plays a detrimental role by facilitating bacterial persistence via the same mechanism of controlling proinflammatory T cell responses. Our findings demonstrate that induction of IL-10 has a major influence on disease outcome during acute S. aureus infection. Too much IL-10 at one end of the scale may suppress otherwise protective T cell responses, thus facilitating persistence of the bacteria, and at the other end, too little IL-10 may tend toward fatal host-mediated pathology through excessive activation of T cells and associated phagocyte-mediated damage.
  • Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection.

    Thänert, Robert; Goldmann, Oliver; Beineke, Andreas; Medina, Eva; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02-03)
    The rise of antibiotic resistance calls for alternative strategies to treat bacterial infections. One attractive strategy is to directly target bacterial virulence factors with anti-virulence drugs. The expression of virulence traits by pathogens is, however, not constitutive but rather induced by the level of stress encountered within the host. Here we use dual RNA sequencing (RNA-seq) to show that intrinsic variability in the level of host resistance greatly affects the pathogen's transcriptome in vivo. Through analysis of the transcriptional profiles of host and pathogen during Staphylococcus aureus infection of two mouse strains, shown to be susceptible (A/J) or resistant (C57BL/6) to the pathogen, we demonstrate that the expression of virulence factors is dependent on the encountered host resistance. We furthermore provide evidence that this dependence strongly influences the efficacy of anti-virulence strategies, highlighting a potential limitation for the implementation of these strategies.
  • Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection

    Thänert, Robert; Goldmann, Oliver; Beineke, Andreas; Medina, Eva; Helmholtz Centre for infection research. Inhoffenstr. 7. 38124 Braunschweig, Germany. (2017-02-03)
  • Differential Contributions of the Complement Anaphylotoxin Receptors C5aR1 and C5aR2 to the Early Innate Immune Response against Staphylococcus aureus Infection.

    Horst, Sarah A; Itzek, Andreas; Klos, Andreas; Beineke, Andreas; Medina, Eva; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
    The complement anaphylatoxin C5a contributes to host defense against Staphylococcus aureus. In this study, we investigated the functional role of the two known C5a receptors, C5aR1 and C5aR2, in the host response to S. aureus. We found that C5aR1(-/)(-) mice exhibited greater susceptibility to S. aureus bloodstream infection than wild type and C5aR2(-/)(-) mice, as demonstrated by the significantly higher bacterial loads in the kidneys and heart at 24 h of infection, and by the higher levels of inflammatory IL-6 in serum. Histological and immunohistochemistry investigation of infected kidneys at 24 h after bacterial inoculation revealed a discrete infiltration of neutrophils in wild type mice but already well-developed abscesses consisting of bacterial clusters surrounded by a large number of neutrophils in both C5aR1(-/)(-) and C5aR2(-/)(-) mice. Furthermore, blood neutrophils from C5aR1(-/)(-) mice were less efficient than those from wild type or C5aR2(-/)(-) mice at killing S. aureus. The requirement of C5aR1 for efficient killing of S. aureus was also demonstrated in human blood after disrupting C5a-C5aR1 signaling using specific inhibitors. These results demonstrated a role for C5aR1 in S. aureus clearance as well as a role for both C5aR1 and C5aR2 in the orchestration of the inflammatory response during infection.
  • Iron-chelating agent desferrioxamine stimulates formation of neutrophil extracellular traps (NETs) in human blood-derived neutrophils.

    Völlger, Lena; Akong-Moore, Kathryn; Cox, Linda; Goldmann, Oliver; Wang, Yanming; Schäfer, Simon T; Naim, Hassan Y; Nizet, Victor; von Köckritz-Blickwede, Maren; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-07)
    Neutrophil extracellular trap (NET) formation is a significant innate immune defense mechanism against microbial infection that complements other neutrophil functions including phagocytosis and degranulation of antimicrobial peptides. NETs are decondensed chromatin structures in which antimicrobial components (histones, antimicrobial peptides and proteases) are deployed and mediate immobilization of microbes. Here we describe an effect of iron chelation on the phenotype of NET formation. Iron-chelating agent desferrioxamine (DFO) showed a modest but significant induction of NETs by freshly isolated human neutrophils as visualized and quantified by immunocytochemistry against histone-DNA complexes. Further analyses revealed that NET induction by iron chelation required NADPH-dependent production of reactive oxygen species (ROS) as well as protease and peptidyl-arginine-deiminase 4 (PAD4) activities, three key mechanistic pathways previously linked to NET formation. Our results demonstrate that iron chelation by DFO contributes to the formation of NETs and suggest a target for pharmacological manipulation of NET activity.
  • Global Regulation of Gene Expression by the MafR Protein of Enterococcus faecalis.

    Ruiz-Cruz, Sofía; Espinosa, Manuel; Goldmann, Oliver; Bravo, Alicia; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015)
    Enterococcus faecalis is a natural inhabitant of the human gastrointestinal tract. However, as an opportunistic pathogen, it is able to colonize other host niches and cause life-threatening infections. Its adaptation to new environments involves global changes in gene expression. The EF3013 gene (here named mafR) of E. faecalis strain V583 encodes a protein (MafR, 482 residues) that has sequence similarity to global response regulators of the Mga/AtxA family. The enterococcal OG1RF genome also encodes the MafR protein (gene OG1RF_12293). In this work, we have identified the promoter of the mafR gene using several in vivo approaches. Moreover, we show that MafR influences positively the transcription of many genes on a genome-wide scale. The most significant target genes encode components of PTS-type membrane transporters, components of ABC-type membrane transporters, and proteins involved in the metabolism of carbon sources. Some of these genes were previously reported to be up-regulated during the growth of E. faecalis in blood and/or in human urine. Furthermore, we show that a mafR deletion mutant strain induces a significant lower degree of inflammation in the peritoneal cavity of mice, suggesting that enterococcal cells deficient in MafR are less virulent. Our work indicates that MafR is a global transcriptional regulator. It might facilitate the adaptation of E. faecalis to particular host niches and, therefore, contribute to its potential virulence.
  • Genome sequence of the pink-pigmented marine bacterium Loktanella hongkongensis type strain (UST950701-009P(T)), a representative of the Roseobacter group.

    Lau, Stanley Ck; Riedel, Thomas; Fiebig, Anne; Han, James; Huntemann, Marcel; Petersen, Jörn; Ivanova, Natalia N; Markowitz, Victor; Woyke, Tanja; Göker, Markus; Kyrpides, Nikos C; Klenk, Hans-Peter; Qian, Pei-Yuan (2015)
    Loktanella hongkongensis UST950701-009P(T) is a Gram-negative, non-motile and rod-shaped bacterium isolated from a marine biofilm in the subtropical seawater of Hong Kong. When growing as a monospecies biofilm on polystyrene surfaces, this bacterium is able to induce larval settlement and metamorphosis of a ubiquitous polychaete tubeworm Hydroides elegans. The inductive cues are low-molecular weight compounds bound to the exopolymeric matrix of the bacterial cells. In the present study we describe the features of L. hongkongensis strain DSM 17492(T) together with its genome sequence and annotation and novel aspects of its phenotype. The 3,198,444 bp long genome sequence encodes 3104 protein-coding genes and 57 RNA genes. The two unambiguously identified extrachromosomal replicons contain replication modules of the RepB and the Rhodobacteraceae-specific DnaA-like type, respectively.
  • High-resolution transcriptomic analysis of the adaptive response of Staphylococcus aureus during acute and chronic phases of osteomyelitis.

    Szafranska, Anna K; Oxley, Andrew P A; Chaves-Moreno, Diego; Horst, Sarah A; Roßlenbroich, Steffen; Peters, Georg; Goldmann, Oliver; Rohde, Manfred; Sinha, Bhanu; Pieper, Dietmar H; Löffler, Bettina; Jauregui, Ruy; Wos-Oxley, Melissa L; Medina, Eva; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014)
    Osteomyelitis is a difficult-to-eradicate bone infection typically caused by Staphylococcus aureus. In this study, we investigated the in vivo transcriptional adaptation of S. aureus during bone infection. To this end, we determined the transcriptome of S. aureus during the acute (day 7) and chronic (day 28) phases of experimental murine osteomyelitis using RNA sequencing (RNA-Seq). We identified a total of 180 genes significantly more highly expressed by S. aureus during acute or chronic in vivo infection than under in vitro growth conditions. These genes encoded proteins involved in gluconeogenesis, proteolysis of host proteins, iron acquisition, evasion of host immune defenses, and stress responses. At the regulatory level, sarA and -R and saeR and -S as well as the small RNA RsaC were predominantly expressed by S. aureus during in vivo infection. Only nine genes, including the genes encoding the arginine deiminase (ADI) pathway and those involved in the stringent response, were significantly more highly expressed by S. aureus during the chronic than the acute stage of infection. Analysis by quantitative reverse transcription-PCR (qRT-PCR) of a subset of these in vivo-expressed genes in clinical specimens yielded the same results as those observed in the murine system. Collectively, our results show that during acute osteomyelitis, S. aureus induced the transcription of genes that mediate metabolic adaptation, immune evasion, and replication. During the chronic phase, however, S. aureus switched its transcriptional response from a proliferative to a persistence mode, probably driven by the severe deficiency in nutrient supplies. Interfering with the survival strategies of S. aureus during chronic infection could lead to more effective treatments.
  • Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection.

    Tuchscherr, Lorena; Medina, Eva; Hussain, Muzaffar; Völker, Wolfgang; Heitmann, Vanessa; Niemann, Silke; Holzinger, Dirk; Roth, Johannes; Proctor, Richard A; Becker, Karsten; Peters, Georg; Löffler, Bettina (2011-03)
    Staphylococcus aureus is a frequent cause for serious, chronic and therapy-refractive infections in spite of susceptibility to antibiotics in vitro. In chronic infections, altered bacterial phenotypes, such as small colony variants (SCVs), have been found. Yet, it is largely unclear whether the ability to interconvert from the wild-type to the SCV phenotype is only a rare clinical and/or just laboratory phenomenon or is essential to sustain an infection. Here, we performed different long-term in vitro and in vivo infection models with S. aureus and we show that viable bacteria can persist within host cells and/or tissues for several weeks. Persistence induced bacterial phenotypic diversity, including SCV phenotypes, accompanied by changes in virulence factor expression and auxotrophism. However, the recovered SCV phenotypes were highly dynamic and rapidly reverted to the fully virulent wild-type form when leaving the intracellular location and infecting new cells. Our findings demonstrate that bacterial phenotype switching is an integral part of the infection process that enables the bacteria to hide inside host cells, which can be a reservoir for chronic and therapy-refractive infections.
  • The role of coagulation/fibrinolysis during Streptococcus pyogenes infection.

    Loof, Torsten G; Deicke, Christin; Medina, Eva; Helmholtz Centre for infection research, Inhoffenstr. 7, D38124 Braunschweig, Germany. (2014)
    The hemostatic system comprises platelet aggregation, coagulation and fibrinolysis and is a host defense mechanism that protects the integrity of the vascular system after tissue injury. During bacterial infections, the coagulation system cooperates with the inflammatory system to eliminate the invading pathogens. However, pathogenic bacteria have frequently evolved mechanisms to exploit the hemostatic system components for their own benefit. Streptococcus pyogenes, also known as Group A Streptococcus, provides a remarkable example of the extraordinary capacity of pathogens to exploit the host hemostatic system to support microbial survival and dissemination. The coagulation cascade comprises the contact system (also known as the intrinsic pathway) and the tissue factor pathway (also known as the extrinsic pathway), both leading to fibrin formation. During the early phase of S. pyogenes infection, the activation of the contact system eventually leads to bacterial entrapment within a fibrin clot, where S. pyogenes is immobilized and killed. However, entrapped S. pyogenes can circumvent the antimicrobial effect of the clot by sequestering host plasminogen on the bacterial cell surface that, after conversion into its active proteolytic form, plasmin, degrades the fibrin network and facilitates the liberation of S. pyogenes from the clot. Furthermore, the surface-localized fibrinolytic activity also cleaves a variety of extracellular matrix proteins, thereby enabling S. pyogenes to migrate across barriers and disseminate within the host. This review summarizes the knowledge gained during the last two decades on the role of coagulation/fibrinolysis in host defense against S. pyogenes as well as the strategies developed by this pathogen to evade and exploit these host mechanisms for its own benefit.
  • Prognostic value and therapeutic potential of TREM-1 in Streptococcus pyogenes- induced sepsis.

    Horst, Sarah A; Linnér, Anna; Beineke, Andreas; Lehne, Sabine; Höltje, Claudia; Hecht, Alexander; Norrby-Teglund, Anna; Medina, Eva; Dep. of infection immunology, Helmholtz Centre for infection research, Braunschweig, Germany (2013)
    TREM-1 (triggering receptor expressed on myeloid cells) is a surface molecule expressed on neutrophils and macrophages which has been implicated in the amplification of inflammatory responses triggered during infection. In the present study, we have investigated the clinical significance of TREM-1 in Streptococcus pyogenes-induced severe sepsis in both experimentally infected mice as well as in patients with streptococcal toxic shock. We found that S. pyogenes induced a dose-dependent upregulation of TREM-1 in in vitro cultured phagocytic cells and in the organs of S. pyogenes-infected mice. Furthermore, we reported a positive correlation between serum levels of soluble TREM-1 (sTREM-1) and disease severity in infected patients as well as in experimentally infected mice. Hence, sTREM-1 may represent a useful surrogate marker for streptococcal sepsis. We found that modulation of TREM-1 by administration of the TREM-1 decoy receptor rTREM-1/Fc substantially attenuated the synthesis of inflammatory cytokines. More importantly, treatment of S. pyogenes-infected septic mice with rTREM-1/Fc or the synthetically produced conserved extracellular domain LP17 significantly improved disease outcome. In summary, our data suggest that TREM-1 may not only represent a valuable marker for S. pyogenes infection severity but it may also be an attractive target for the treatment of streptococcal sepsis.
  • Phagocytosis Escape by a Staphylococcus aureus Protein That Connects Complement and Coagulation Proteins at the Bacterial Surface.

    Ko, Ya-Ping; Kuipers, Annemarie; Freitag, Claudia M; Jongerius, Ilse; Medina, Eva; van Rooijen, Willemien J; Spaan, András N; van Kessel, Kok P M; Höök, Magnus; Rooijakkers, Suzan H M; RG Infection immunology, Helmholtz Centre for infection research (HZI), Inhoffenstr. 7, D-38125 Braunschweig, Germany (2013-12)
    Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a 'capsule'-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein.
  • Lung dendritic cells facilitate extrapulmonary bacterial dissemination during pneumococcal pneumonia.

    Rosendahl, Alva; Bergmann, Simone; Hammerschmidt, Sven; Goldmann, Oliver; Medina, Eva; Infection Immunology Research Group, Department of Medical Microbiology, Helmholtz Centre for Infection Research Braunschweig, Germany. (2013)
    Streptococcus pneumoniae is a leading cause of bacterial pneumonia worldwide. Given the critical role of dendritic cells (DCs) in regulating and modulating the immune response to pathogens, we investigated here the role of DCs in S. pneumoniae lung infections. Using a well-established transgenic mouse line which allows the conditional transient depletion of DCs, we showed that ablation of DCs resulted in enhanced resistance to intranasal challenge with S. pneumoniae. DCs-depleted mice exhibited delayed bacterial systemic dissemination, significantly reduced bacterial loads in the infected organs and lower levels of serum inflammatory mediators than non-depleted animals. The increased resistance of DCs-depleted mice to S. pneumoniae was associated with a better capacity to restrict pneumococci extrapulmonary dissemination. Furthermore, we demonstrated that S. pneumoniae disseminated from the lungs into the regional lymph nodes in a cell-independent manner and that this direct way of dissemination was much more efficient in the presence of DCs. We also provide evidence that S. pneumoniae induces expression and activation of matrix metalloproteinase-9 (MMP-9) in cultured bone marrow-derived DCs. MMP-9 is a protease involved in the breakdown of extracellular matrix proteins and is critical for DC trafficking across extracellular matrix and basement membranes during the migration from the periphery to the lymph nodes. MMP-9 was also significantly up-regulated in the lungs of mice after intranasal infection with S. pneumoniae. Notably, the expression levels of MMP-9 in the infected lungs were significantly decreased after depletion of DCs suggesting the involvement of DCs in MMP-9 production during pneumococcal pneumonia. Thus, we propose that S. pneumoniae can exploit the DC-derived proteolysis to open tissue barriers thereby facilitating its own dissemination from the local site of infection.
  • The expanding world of extracellular traps: not only neutrophils but much more.

    Goldmann, Oliver; Medina, Eva; Infection Immunology Research Group, Helmholtz Centre for Infection Research Braunschweig, Germany. (2012)
    The release of extracellular traps (ETs) is a recently described mechanism of innate immune response to infection. Although ETs have been intensely investigated in the context of neutrophil antimicrobial effector mechanisms, other immune cells such as mast cells, eosinophils, and macrophages can also release these structures. The different ETs have several features in common, regardless of the type of cells from which they originated, including a DNA backbone with embedded antimicrobial peptides, proteases, and histones. However, they also exhibit remarkable individual differences such as the type of sub-cellular compartments from where the DNA backbone originates (e.g., nucleus or mitochondria), the proportion of responding cells within the pool, and/or the molecular mechanism/s underlying the ETs formation. This review summarizes the knowledge accumulated in recent years regarding the complex and expanding world of ETs and their role in immune function with particular emphasis on the role of other immune cells rather than on neutrophils exclusively.
  • Global transcriptome analysis in influenza-infected mouse lungs reveals the kinetics of innate and adaptive host immune responses.

    Pommerenke, Claudia; Wilk, Esther; Srivastava, Barkha; Schulze, Annika; Novoselova, Natalia; Geffers, Robert; Schughart, Klaus; Department of Infection Genetics, Helmholtz Centre for Infection Research and University of Veterinary Medicine Hannover, Braunschweig, Germany. (2012)
    An infection represents a highly dynamic process involving complex biological responses of the host at many levels. To describe such processes at a global level, we recorded gene expression changes in mouse lungs after a non-lethal infection with influenza A virus over a period of 60 days. Global analysis of the large data set identified distinct phases of the host response. The increase in interferon genes and up-regulation of a defined NK-specific gene set revealed the initiation of the early innate immune response phase. Subsequently, infiltration and activation of T and B cells could be observed by an augmentation of T and B cell specific signature gene expression. The changes in B cell gene expression and preceding chemokine subsets were associated with the formation of bronchus-associated lymphoid tissue. In addition, we compared the gene expression profiles from wild type mice with Rag2 mutant mice. This analysis readily demonstrated that the deficiency in the T and B cell responses in Rag2 mutants could be detected by changes in the global gene expression patterns of the whole lung. In conclusion, our comprehensive gene expression study describes for the first time the entire host response and its kinetics to an acute influenza A infection at the transcriptome level.
  • Staphylococcus aureus evades the extracellular antimicrobial activity of mast cells by promoting its own uptake.

    Abel, Jens; Goldmann, Oliver; Ziegler, Christina; Höltje, Claudia; Smeltzer, Mark S; Cheung, Ambrose L; Bruhn, Daniela; Rohde, Manfred; Medina, Eva; Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2011)
    In this study, we investigated the interactions of Staphylococcus aureus with mast cells, which are multifunctional sentinels lining the surfaces of the body. We found that bone marrow-derived murine mast cells (BMMC) exerted a powerful phagocytosis-independent antimicrobial activity against S. aureus. Both the release of extracellular traps as well as discharge of antimicrobial compounds were the mechanisms used by the BMMC to kill extracellular S. aureus. This was accompanied by the secretion of mediators such as TNF-α involved in the recruitment of effector cells. Interestingly, S. aureus subverted the extracellular antimicrobial activity of the BMMC by internalizing within these cells. S. aureus was also capable to internalize within human mast cells (HMC-1) and within murine skin mast cells during in vivo infection. Bacteria internalization was, at least in part, mediated by the α5β1 integrins expressed on the surface of the mast cell. In the intracellular milieu, the bacterium survived and persisted by increasing the cell wall thickness and by gaining access into the mast cell cytosol. The expression of α-hemolysin was essential for staphylococci intracellular persistence. By hiding within the long-life mast cells, staphylococci not only avoid clearance but also establish an infection reservoir that could contribute to chronic carriage.
  • Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response.

    Nippe, Nadine; Varga, Georg; Holzinger, Dirk; Löffler, Bettina; Medina, Eva; Becker, Karsten; Roth, Johannes; Ehrchen, Jan M; Sunderkötter, Cord; Institute of Immunology, University of Muenster, Muenster, Germany. (2011-01)
    Staphylococcus aureus is the leading cause of bacterial skin infection. Once it overcomes the epithelial barrier, it either remains locally controlled or spreads in the dermis causing soft tissue infection. These different courses depend not only on its virulence factors, but also on the immune response of the infected individual. The goal of this study was to identify host factors that influence different outcomes. We, therefore, established comparative analysis of subcutaneous footpad infection with S. aureus (SH1000) in different inbred mouse strains. We found that C57BL/6 mice are more susceptible than BALB/c and DBA/2 mice, reflected by significantly higher footpad swelling and bacterial load, as well as increased dissemination of bacteria into inguinal lymph nodes and kidneys. This susceptibility was associated with lower influx of polymorphonuclear leukocytes (PMNs), but higher secretion of CXCL-2. Remarkably, resistance correlated with S. aureus-specific Th2-cell response in BALB/c and DBA/2 mice, whereas susceptible C57BL/6 mice generated a Th1-cell response. As Th1 cells are able to induce release of CXCL-2, and as CXCL-2 is able to increase the survival of S. aureus within PMNs, interactions between PMNs and Th1 or Th2 cells need to be considered as important mechanisms of resistance in murine soft tissue infection with S. aureus.

View more