• The wild-derived inbred mouse strain SPRET/Ei is resistant to LPS and defective in IFN-beta production.

      Mahieu, Tina; Park, Jin Mo; Revets, Hilde; Pasche, Bastian; Lengeling, Andreas; Staelens, Jan; Wullaert, Andy; Vanlaere, Ineke; Hochepied, Tino; van Roy, Frans; Karin, Michael; Libert, Claude; Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology and Ghent University, Technologiepark 927, B-9052 Ghent, Belgium. (2006-02-14)
      Although activation of Toll-like receptor 4 (TLR4)-positive cells is essential for eliminating Gram-negative bacteria, overactivation of these cells by the TLR4 ligand LPS initiates a systemic inflammatory reaction and shock. Here we demonstrate that SPRET/Ei mice, derived from Mus spretus, exhibit a dominant resistance against LPS-induced lethality. This resistance is mediated by bone marrow-derived cells. Macrophages from these mice exhibit normal signaling and gene expression responses that depend on the myeloid differentiation factor 88 adaptor protein, but they are impaired in IFN-beta production. The defect appears to be specific for IFN-beta, although the SPRET/Ei IFN-beta promoter is normal. In vivo IFN-beta induction by LPS or influenza virus is very low in SPRET/Ei mice, but IFN-beta-treatment restores the sensitivity to LPS, and IFN type 1 receptor-deficient mice are also resistant to LPS. Because of the defective induction of IFN-beta, these mice are completely resistant to Listeria monocytogenes and highly sensitive to Leishmania major infection. Stimulation of SPRET/Ei macrophages leads to rapid down-regulation of IFN type 1 receptor mRNA expression, which is reflected in poor induction of IFN-beta-dependent genes. This finding indicates that the resistance of SPRET/Ei mice to LPS is due to disruption of a positive-feedback loop that amplifies IFN-beta production. In contrast to TLR4-deficient mice, SPRET/Ei mice resist both LPS and sepsis induced with Klebsiella pneumoniae.
    • XGAP: a uniform and extensible data model and software platform for genotype and phenotype experiments.

      Swertz, Morris A; Velde, K Joeri van der; Tesson, Bruno M; Scheltema, Richard A; Arends, Danny; Vera, Gonzalo; Alberts, Rudi; Dijkstra, Martijn; Schofield, Paul; Schughart, Klaus; Hancock, John M; Smedley, Damian; Wolstencroft, Katy; Goble, Carole; de Brock, Engbert O; Jones, Andrew R; Parkinson, Helen E; Jansen, Ritsert C; Genomics Coordination Center, Department of Genetics, University Medical Center Groningen and University of Groningen, Groningen, The Netherlands. m.a.swertz@rug.nl (2010)
      We present an extensible software model for the genotype and phenotype community, XGAP. Readers can download a standard XGAP (http://www.xgap.org) or auto-generate a custom version using MOLGENIS with programming interfaces to R-software and web-services or user interfaces for biologists. XGAP has simple load formats for any type of genotype, epigenotype, transcript, protein, metabolite or other phenotype data. Current functionality includes tools ranging from eQTL analysis in mouse to genome-wide association studies in humans.