• The 3D structure of Kaposi sarcoma herpesvirus LANA C-terminal domain bound to DNA.

      Hellert, Jan; Weidner-Glunde, Magdalena; Krausze, Joern; Lünsdorf, Heinrich; Ritter, Christiane; Schulz, Thomas F; Lührs, Thorsten (2015-05-26)
      Kaposi sarcoma herpesvirus (KSHV) persists as a latent nuclear episome in dividing host cells. This episome is tethered to host chromatin to ensure proper segregation during mitosis. For duplication of the latent genome, the cellular replication machinery is recruited. Both of these functions rely on the constitutively expressed latency-associated nuclear antigen (LANA) of the virus. Here, we report the crystal structure of the KSHV LANA DNA-binding domain (DBD) in complex with its high-affinity viral target DNA, LANA binding site 1 (LBS1), at 2.9 Å resolution. In contrast to homologous proteins such as Epstein-Barr virus nuclear antigen 1 (EBNA-1) of the related γ-herpesvirus Epstein-Barr virus, specific DNA recognition by LANA is highly asymmetric. In addition to solving the crystal structure, we found that apart from the two known LANA binding sites, LBS1 and LBS2, LANA also binds to a novel site, denoted LBS3. All three sites are located in a region of the KSHV terminal repeat subunit previously recognized as a minimal replicator. Moreover, we show that the LANA DBD can coat DNA of arbitrary sequence by virtue of a characteristic lysine patch, which is absent in EBNA-1 of the Epstein-Barr virus. Likely, these higher-order assemblies involve the self-association of LANA into supermolecular spirals. One such spiral assembly was solved as a crystal structure of 3.7 Å resolution in the absence of DNA. On the basis of our data, we propose a model for the controlled nucleation of higher-order LANA oligomers that might contribute to the characteristic subnuclear KSHV microdomains ("LANA speckles"), a hallmark of KSHV latency.
    • The wild-derived inbred mouse strain SPRET/Ei is resistant to LPS and defective in IFN-beta production.

      Mahieu, Tina; Park, Jin Mo; Revets, Hilde; Pasche, Bastian; Lengeling, Andreas; Staelens, Jan; Wullaert, Andy; Vanlaere, Ineke; Hochepied, Tino; van Roy, Frans; Karin, Michael; Libert, Claude; Department for Molecular Biomedical Research, Flanders Interuniversity Institute for Biotechnology and Ghent University, Technologiepark 927, B-9052 Ghent, Belgium. (2006-02-14)
      Although activation of Toll-like receptor 4 (TLR4)-positive cells is essential for eliminating Gram-negative bacteria, overactivation of these cells by the TLR4 ligand LPS initiates a systemic inflammatory reaction and shock. Here we demonstrate that SPRET/Ei mice, derived from Mus spretus, exhibit a dominant resistance against LPS-induced lethality. This resistance is mediated by bone marrow-derived cells. Macrophages from these mice exhibit normal signaling and gene expression responses that depend on the myeloid differentiation factor 88 adaptor protein, but they are impaired in IFN-beta production. The defect appears to be specific for IFN-beta, although the SPRET/Ei IFN-beta promoter is normal. In vivo IFN-beta induction by LPS or influenza virus is very low in SPRET/Ei mice, but IFN-beta-treatment restores the sensitivity to LPS, and IFN type 1 receptor-deficient mice are also resistant to LPS. Because of the defective induction of IFN-beta, these mice are completely resistant to Listeria monocytogenes and highly sensitive to Leishmania major infection. Stimulation of SPRET/Ei macrophages leads to rapid down-regulation of IFN type 1 receptor mRNA expression, which is reflected in poor induction of IFN-beta-dependent genes. This finding indicates that the resistance of SPRET/Ei mice to LPS is due to disruption of a positive-feedback loop that amplifies IFN-beta production. In contrast to TLR4-deficient mice, SPRET/Ei mice resist both LPS and sepsis induced with Klebsiella pneumoniae.