• Infection- and procedure-dependent effects on pulmonary gene expression in the early phase of influenza A virus infection in mice

      Preusse, Matthias; Tantawy, Mohamed A; Klawonn, Frank; Schughart, Klaus; Pessler, Frank (2013-12-17)
      Abstract Background Investigating the host response in the early stage of influenza A virus (IAV) infection is of considerable interest. However, it is conceivable that effects due to the anesthesia and/or intranasal infection procedure might introduce artifacts. We therefore aimed to evaluate the effects of anesthesia and/or intranasal infection on transcription of selected pulmonary mRNAs in two inbred mouse strains with differential susceptibility to IAV infection. Results DBA/2J and C57BL/6J mice were evaluated in a time course experiment in which lung tissue was sampled after 6, 12, 18, 24, 48 and 120 h. After anesthesia with ketamine and xylazine, a suspension of mouse-adapted IAV strain PR8_Mun in 20 μl sterile buffer, or 20 μl sterile buffer only, was instilled intranasally. The mice receiving anesthesia and PBS only were designated the “mock treatment” group. Pulmonary expression of 10 host mRNAs (Fos, Retnla, Irg1, Il6, Il1b, Cxcl10, Stat1, Ifng, Ifnl2, and Mx1) and viral hemagglutinin (HA) mRNA were determined at the designated time points. As expected, weight loss and viral replication were greater in the DBA/2J strain (which is more susceptible to IAV infection). Four mRNAs (Retnla, Irg1, Il6, and Cxcl10) were procedure-dependently regulated in DBA/2J mice between 6 and 24 h, and two (Retnla and Il6) in C57BL/6J mice, although to a lesser extent. All 10 mRNAs rose after infection, but one (Fos) only in DBA/2J mice. These infection-dependent effects could be separated from procedure-dependent effects beginning around 12 h in DBA/2J and 18 h in C57BL/6J mice. The interferon-related mRNAs Stat1, Ifng, Infl2, and Mx1 were unaffected by mock treatment in either mouse strain. Mx1 and Infl2 correlated best with HA mRNA expression (r = 0.97 and 0.93, respectively, in DBA/2J). Conclusions These results demonstrate effects of the anesthesia and/or intranasal infection procedure on pulmonary gene expression, which are detectable between approximately 6 and 24 h post procedure and vary in intensity and temporal evolution depending on the mouse strain used. Mock infection controls should be included in all studies on pulmonary gene expression in the early phase of infection with IAV and, likely, other respiratory pathogens.
    • Influence of internalin a murinisation on host resistance to orally acquired listeriosis in mice

      Bergmann, Silke; Beard, Philippa M; Pasche, Bastian; Lienenklaus, Stefan; Weiss, Siegfried; Gahan, Cormac G M; Schughart, Klaus; Lengeling, Andreas (2013-04-23)
      Abstract Background The bacterial surface protein internalin (InlA) is a major virulence factor of the food-born pathogen Listeria monocytogenes. It plays a critical role in the bacteria crossing the host intestinal barrier by a species-specific interaction with the cell adhesion molecule E-cadherin. In mice, the interaction of InlA with murine E-cadherin is impaired due to sequence-specific binding incompatibilities. We have previously used the approach of ‘murinisation’ to establish an oral listeriosis infection model in mice by exchanging two amino acid residues in InlA. This dramatically increases binding to mouse E-cadherin. In the present study, we have used bioluminescent murinised and non-murinised Listeria strains to examine the spatiotemporal dissemination of Listeria in four diverse mouse genetic backgrounds after oral inoculation. Results The murinised Listeria monocytogenes strain showed enhanced invasiveness and induced more severe infections in all four investigated mouse inbred strains compared to the non-murinised Listeria strain. We identified C57BL/6J mice as being most resistant to orally acquired listeriosis whereas C3HeB/FeJ, A/J and BALB/cJ mice were found to be most susceptible to infection. This was reflected in faster kinetics of Listeria dissemination, higher bacterial loads in internal organs, and elevated serum levels of IL-6, IFN-γ, TNF-α and CCL2 in the susceptible strains as compared to the resistant C57BL/6J strain. Importantly, murinisation of InlA did not cause enhanced invasion of Listeria monocytogenes into the brain. Conclusion Murinised Listeria are able to efficiently cross the intestinal barrier in mice from diverse genetic backgrounds. However, expression of murinized InlA does not enhance listerial brain invasion suggesting that crossing of the blood brain barrier and crossing of the intestinal epithelium are achieved by Listeria monocytogenes through different molecular mechanisms.
    • Influenza H3N2 infection of the collaborative cross founder strains reveals highly divergent host responses and identifies a unique phenotype in CAST/EiJ mice.

      Leist, Sarah R; Pilzner, Carolin; van den Brand, Judith M A; Dengler, Leonie; Geffers, Robert; Kuiken, Thijs; Balling, Rudi; Kollmus, Heike; Schughart, Klaus; Helmholtz Centre for infection research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany. (2016)
      Influenza A virus is a zoonotic pathogen that poses a major threat to human and animal health. The severe course of influenza infection is not only influenced by viral virulence factors but also by individual differences in the host response. To determine the extent to which the genetic background can modulate severity of an infection, we studied the host responses to influenza infections in the eight genetically highly diverse Collaborative Cross (CC) founder mouse strains.
    • INFRAFRONTIER--providing mutant mouse resources as research tools for the international scientific community.

      INFRAFRONTIER Consortium; Meehan, T. F.; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-01)
      The laboratory mouse is a key model organism to investigate mechanism and therapeutics of human disease. The number of targeted genetic mouse models of disease is growing rapidly due to high-throughput production strategies employed by the International Mouse Phenotyping Consortium (IMPC) and the development of new, more efficient genome engineering techniques such as CRISPR based systems. We have previously described the European Mouse Mutant Archive (EMMA) resource and how this international infrastructure provides archiving and distribution worldwide for mutant mouse strains. EMMA has since evolved into INFRAFRONTIER (http://www.infrafrontier.eu), the pan-European research infrastructure for the systemic phenotyping, archiving and distribution of mouse disease models. Here we describe new features including improved search for mouse strains, support for new embryonic stem cell resources, access to training materials via a comprehensive knowledgebase and the promotion of innovative analytical and diagnostic techniques.
    • Inhibition of lung serine proteases in mice: a potentially new approach to control influenza infection.

      Bahgat, Mahmoud M; Błazejewska, Paulina; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2011-01-20)
      Host serine proteases are essential for the influenza virus life cycle because the viral haemagglutinin is synthesized as a precursor which requires proteolytic maturation. Therefore, we studied the activity and expression of serine proteases in lungs from mice infected with influenza and evaluated the effect of serine protease inhibitors on virus replication both in cell culture and in infected mice.
    • Jmjd6 catalyses lysyl-hydroxylation of U2AF65, a protein associated with RNA splicing.

      Webby, Celia J; Wolf, Alexander; Gromak, Natalia; Dreger, Mathias; Kramer, Holger; Kessler, Benedikt; Nielsen, Michael L; Schmitz, Corinna; Butler, Danica S; Yates, John R; Delahunty, Claire M; Hahn, Phillip; Lengeling, Andreas; Mann, Matthias; Proudfoot, Nicholas J; Schofield, Christopher J; Böttger, Angelika; Chemistry Research Laboratory and Oxford Centre for Integrative Systems Biology, University of Oxford, 12 Mansfield Road, Oxford, Oxon OX1 3TA, UK. (2009-07-03)
      The finding that the metazoan hypoxic response is regulated by oxygen-dependent posttranslational hydroxylations, which regulate the activity and lifetime of hypoxia-inducible factor (HIF), has raised the question of whether other hydroxylases are involved in the regulation of gene expression. We reveal that the splicing factor U2 small nuclear ribonucleoprotein auxiliary factor 65-kilodalton subunit (U2AF65) undergoes posttranslational lysyl-5-hydroxylation catalyzed by the Fe(II) and 2-oxoglutarate-dependent dioxygenase Jumonji domain-6 protein (Jmjd6). Jmjd6 is a nuclear protein that has an important role in vertebrate development and is a human homolog of the HIF asparaginyl-hydroxylase. Jmjd6 is shown to change alternative RNA splicing of some, but not all, of the endogenous and reporter genes, supporting a specific role for Jmjd6 in the regulation of RNA splicing.
    • Lst1 deficiency has a minor impact on course and outcome of the host response to influenza A H1N1 infections in mice.

      Leist, Sarah R; Kollmus, Heike; Hatesuer, Bastian; Lambertz, Ruth L O; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Previously, we performed a quantitative trait locus (QTL) mapping study in BXD recombinant inbred mice to identify host genetic factors that confer resistance to influenza A virus infection. We found Lst1 (leukocyte specific transcript 1) as one of the most promising candidate genes in the Qivr17-2 locus because it is non-functional in DBA/2 J mice. Several studies have proposed that LST1 plays a role in the immune response to inflammatory diseases in humans and has additional immune-regulatory functions. Here, we evaluated the relevance of LST1 for the host response to influenza A infection in B6-Lst1 (-/-) mutant mice.
    • Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice.

      Yang, W; Punyadarsaniya, D; Lambertz, R L O; Lee, D C C; Liang, C H; Höper, D; Leist, S R; Hernández-Cáceres, A; Stech, J; Beer, M; Wu, C Y; Wong, C H; Schughart, K; Meng, F; Herrler, G; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-04-15)
      The natural reservoir for influenza viruses is waterfowl, and from there they succeeded in crossing the barrier to different mammalian species. We analyzed the adaptation of avian influenza viruses to a mammalian host by passaging an H9N2 strain three times in differentiated swine airway epithelial cells. Using precision-cut slices from the porcine lung to passage the parental virus, isolates from each of the three passages (P1 to P3) were characterized by assessing growth curves and ciliostatic effects. The only difference noted was an increased growth kinetics of the P3 virus. Sequence analysis revealed four mutations: one each in the PB2 and NS1 proteins and two in the HA protein. The HA mutations, A190V and T212I, were characterized by generating recombinant viruses containing either one or both amino acid exchanges. Whereas the parental virus recognized α2,3-linked sialic acids preferentially, the HA190 mutant bound to a broad spectrum of glycans with α2,6/8/9-linked sialic acids. The HA212 mutant alone differed only slightly from the parental virus; however, the combination of both mutations (HA190+HA212) increased the binding affinity to those glycans recognized by the HA190 mutant. Remarkably, only the HA double mutant showed a significantly increased pathogenicity in mice. In contrast, none of those mutations affected the ciliary activity of the epithelial cells which is characteristic for virulent swine influenza viruses. Taken together, our results indicate that shifts in the HA receptor affinity are just an early adaptation step of avian H9N2 strains; further mutational changes may be required to become virulent for pigs.IMPORTANCESwine play an important role in the interspecies transmission of influenza viruses. Avian influenza A viruses (IAV) of the H9N2 subtype have successfully infected hosts from different species but have not established a stable lineage. We have analyzed the adaptation of IAV-H9N2 virus to target cells of a new host by passaging the virus three times in differentiated porcine respiratory epithelial cells. Among the four mutations detected, the two HA mutations were analyzed by generating recombinant viruses. Depending on the infection system used, the mutations differed in their phenotypic expression, e.g., sialic acid binding activity, replication kinetics, plaque size, and pathogenicity in inbred mice. However, none of the mutations affected the ciliary activity which serves as a virulence marker. Thus, early adaptive mutation enhances the replication kinetics, but more mutations are required for IAV of the H9N2 subtype to become virulent.
    • A new mouse model reveals a critical role for host innate immunity in resistance to Rift Valley fever.

      do Valle, Tânia Zaverucha; Billecocq, Agnès; Guillemot, Laurent; Alberts, Rudi; Gommet, Céline; Geffers, Robert; Calabrese, Kátia; Schughart, Klaus; Bouloy, Michèle; Montagutelli, Xavier; Panthier, Jean-Jacques; Unité Génétique Fonctionnelle de la Souris, Institut Pasteur, Paris, France. (2010-11-15)
      Rift Valley fever (RVF) is an arthropod-borne viral disease repeatedly reported in many African countries and, more recently, in Saudi Arabia and Yemen. RVF virus (RVFV) primarily infects domesticated ruminants, resulting in miscarriage in pregnant females and death for newborns and young animals. It also has the ability to infect humans, causing a feverish syndrome, meningoencephalitis, or hemorrhagic fever. The various outcomes of RVFV infection in animals and humans argue for the existence of host genetic determinants controlling the disease. We investigated the susceptibility of inbred mouse strains to infection with the virulent RVFV ZH548 strain. Compared with classical BALB/cByJ mice, wild-derived Mus m. musculus MBT/Pas mice exhibited earlier and greater viremia and died sooner, a result in sharp contrast with their resistance to infection with West Nile virus and influenza A. Infection of mouse embryonic fibroblasts (MEFs) from MBT/Pas mice with RVFV also resulted in higher viral production. Microarray and quantitative RT-PCR experiments showed that BALB/cByJ MEFs displayed a significant activation of the type I IFN pathway. In contrast, MBT/Pas MEFs elicited a delayed and partial type I IFN response to RVFV infection. RNA interference-mediated inhibition of genes that were not induced by RVFV in MBT/Pas MEFs increased viral production in BALB/cByJ MEFs, thus demonstrating their functional importance in limiting viral replication. We conclude that the failure of MBT/Pas murine strain to induce, in due course, a complete innate immune response is instrumental in the selective susceptibility to RVF.
    • Of mice and men: the host response to influenza virus infection.

      Kollmus, Heike; Pilzner, Carolin; Leist, Sarah R; Heise, Mark; Geffers, Robert; Schughart, Klaus; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-08-01)
      Influenza virus (IV) infections represent a very serious public health problem. At present, no established biomarkers exist to support diagnosis for respiratory viral infections and more importantly for severe IV disease. Studies in animal models are extremely important to understand the biological, genetic, and environmental factors that contribute to severe IV disease and to validate biomarker candidates from human studies. However, mouse human cross-species comparisons are often compromised by the fact that animal studies concentrate on the infected lungs, whereas in humans almost all studies use peripheral blood from patients. In addition, human studies do not consider genetic background as variable although human populations are genetically very diverse. Therefore, in this study, we performed a cross-species gene expression study of the peripheral blood from human patients and from the highly genetically diverse Collaborative Cross (CC) mouse population after IV infection. Our results demonstrate that changes of gene expression in individual genes are highly similar in mice and humans. The top-regulated genes in humans were also differentially regulated in mice. We conclude that the mouse is a highly valuable in vivo model system to validate and to discover gene candidates which can be used as biomarkers in humans. Furthermore, mouse studies allow confirmation of findings in humans in a well-controlled experimental system adding enormous value to the understanding of expression and function of human candidate genes.
    • OLYMPUS: An automated hybrid clustering method in time series gene expression. Case study: Host response after Influenza A (H1N1) infection

      Dimitrakopoulou, Konstantina; Vrahatis, Aristidis G.; Wilk, Esther; Tsakalidis, Athanasios K.; Bezerianos, Anastasios (2013-10-31)
    • The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

      Böse, Jens; Gruber, Achim D; Helming, Laura; Schiebe, Stefanie; Wegener, Ivonne; Hafner, Martin; Beales, Marianne; Köntgen, Frank; Lengeling, Andreas (BioMed Central, 2004)
      Background Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr) on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. Results Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr -/- mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. Conclusion Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance.
    • PLAU inferred from a correlation network is critical for suppressor function of regulatory T cells.

      He, Feng; Chen, Hairong; Probst-Kepper, Michael; Geffers, Robert; Eifes, Serge; Del Sol, Antonio; Schughart, Klaus; Zeng, An-Ping; Balling, Rudi; 1] Department of Infection Genetics, Helmholtz Centre for Infection Research (HZI), University of Veterinary Medicine Hannover, Braunschweig, Germany [2] Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg. (2012-11-20)
      Human FOXP3(+)CD25(+)CD4(+) regulatory T cells (Tregs) are essential to the maintenance of immune homeostasis. Several genes are known to be important for murine Tregs, but for human Tregs the genes and underlying molecular networks controlling the suppressor function still largely remain unclear. Here, we describe a strategy to identify the key genes directly from an undirected correlation network which we reconstruct from a very high time-resolution (HTR) transcriptome during the activation of human Tregs/CD4(+) T-effector cells. We show that a predicted top-ranked new key gene PLAU (the plasminogen activator urokinase) is important for the suppressor function of both human and murine Tregs. Further analysis unveils that PLAU is particularly important for memory Tregs and that PLAU mediates Treg suppressor function via STAT5 and ERK signaling pathways. Our study demonstrates the potential for identifying novel key genes for complex dynamic biological processes using a network strategy based on HTR data, and reveals a critical role for PLAU in Treg suppressor function.
    • Protection from Severe Influenza Virus Infections in Mice Carrying the Mx1 Influenza Virus Resistance Gene Strongly Depends on Genetic Background.

      Shin, Dai-Lun; Hatesuer, Bastian; Bergmann, Silke; Nedelko, Tatiana; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015-10)
      Influenza virus infections represent a serious threat to human health. Both extrinsic and intrinsic factors determine the severity of influenza. The MX dynamin-like GTPase 1 (Mx1) gene has been shown to confer strong resistance to influenza A virus infections in mice. Most laboratory mouse strains, including C57BL/6J, carry nonsense or deletion mutations in Mx1 and thus a nonfunctional allele, whereas wild-derived mouse strains carry a wild-type Mx1 allele. Congenic C57BL/6J (B6-Mx1(r/r)) mice expressing a wild-type allele from the A2G mouse strain are highly resistant to influenza A virus infections, to both mono- and polybasic subtypes. Furthermore, in genetic mapping studies, Mx1 was identified as the major locus of resistance to influenza virus infections. Here, we investigated whether the Mx1 protective function is influenced by the genetic background. For this, we generated a congenic mouse strain carrying the A2G wild-type Mx1 resistance allele on a DBA/2J background (D2-Mx1(r/r)). Most remarkably, congenic D2-Mx1(r/r) mice expressing a functional Mx1 wild-type allele are still highly susceptible to H1N1 virus. However, pretreatment of D2-Mx1(r/r) mice with alpha interferon protected them from lethal infections. Our results showed, for the first time, that the presence of an Mx1 wild-type allele from A2G as such does not fully protect mice from lethal influenza A virus infections. These observations are also highly relevant for susceptibility to influenza virus infections in humans.
    • The proteolytic activation of A (H3N2) Influenza virus hemagglutinin is facilitated by different type II transmembrane serine proteases.

      Kühn, Nora; Bergmann, Silke; Kasnitz, Nadine; Lambertz, Ruth L O; Keppner, Anna; van den Brand, Judith M A; Pöhlmann, Stefan; Weiß, Siegfried; Hummler, Edith; Hatesuer, Bastian; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-02-17)
      Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g. TMPRSS2, TMPRSS4 and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knock-out mice inhibits spread of H1N1 influenza viruses. However, after infection of Tmprss2 knock-out mice with H3N2 only a slight increase was observed in survival and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knock-out mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2(-/-)Tmprss4(-/-) double knock-out mice showed a remarkably reduced virus spread and lung pathology in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus HA in vivo.
    • QTLminer: identifying genes regulating quantitative traits

      Alberts, Rudi; Schughart, Klaus (2010-10-15)
      Abstract Background Quantitative trait locus (QTL) mapping identifies genomic regions that likely contain genes regulating a quantitative trait. However, QTL regions may encompass tens to hundreds of genes. To find the most promising candidate genes that regulate the trait, the biologist typically collects information from multiple resources about the genes in the QTL interval. This process is very laborious and time consuming. Results QTLminer is a bioinformatics tool that automatically performs QTL region analysis. It is available in GeneNetwork and it integrates information such as gene annotation, gene expression and sequence polymorphisms for all the genes within a given genomic interval. Conclusions QTLminer substantially speeds up discovery of the most promising candidate genes within a QTL region.
    • QTLminer: identifying genes regulating quantitative traits.

      Alberts, Rudi; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2010-10-15)
      Quantitative trait locus (QTL) mapping identifies genomic regions that likely contain genes regulating a quantitative trait. However, QTL regions may encompass tens to hundreds of genes. To find the most promising candidate genes that regulate the trait, the biologist typically collects information from multiple resources about the genes in the QTL interval. This process is very laborious and time consuming.
    • Quantitative determination of the diagnostic accuracy of the synovitis score and its components.

      Slansky, Elisabeth; Li, Jialiang; Häupl, Thomas; Morawietz, Lars; Krenn, Veit; Pessler, Frank; Medical Faculty 'Carl Gustav Carus', Technical University of Dresden, Germany. (2010-09)
      To assess the diagnostic accuracy of a three-component synovitis score and to determine the relative contribution of each of its components to its overall discriminatory power.
    • Respiratory Mucosal Proteome Quantification in Human Influenza Infections.

      Marion, Tony; Elbahesh, Husni; Thomas, Paul G; DeVincenzo, John P; Webby, Richard; Schughart, Klaus; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Respiratory influenza virus infections represent a serious threat to human health. Underlying medical conditions and genetic make-up predispose some influenza patients to more severe forms of disease. To date, only a few studies have been performed in patients to correlate a selected group of cytokines and chemokines with influenza infection. Therefore, we evaluated the potential of a novel multiplex micro-proteomics technology, SOMAscan, to quantify proteins in the respiratory mucosa of influenza A and B infected individuals. The analysis included but was not limited to quantification of cytokines and chemokines detected in previous studies. SOMAscan quantified more than 1,000 secreted proteins in small nasal wash volumes from infected and healthy individuals. Our results illustrate the utility of micro-proteomic technology for analysis of proteins in small volumes of respiratory mucosal samples. Furthermore, when we compared nasal wash samples from influenza-infected patients with viral load ≥ 28 and increased IL-6 and CXCL10 to healthy controls, we identified 162 differentially-expressed proteins between the two groups. This number greatly exceeds the number of DEPs identified in previous studies in human influenza patients. Most of the identified proteins were associated with the host immune response to infection, and changes in protein levels of 151 of the DEPs were significantly correlated with viral load. Most important, SOMAscan identified differentially expressed proteins heretofore not associated with respiratory influenza infection in humans. Our study is the first report for the use of SOMAscan to screen nasal secretions. It establishes a precedent for micro-proteomic quantification of proteins that reflect ongoing response to respiratory infection.
    • RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection.

      Wilk, Esther; Pandey, Ashutosh K; Leist, Sarah Rebecca; Hatesuer, Bastian; Preusse, Matthias; Pommerenke, Claudia; Wang, Junxi; Schughart, Klaus; Helmholtz Centre for Infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015)
      The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection.