Recent Submissions

  • The Core Proteome of Biofilm-Grown Clinical Isolates.

    Erdmann, Jelena; Thöming, Janne G; Pohl, Sarah; Pich, Andreas; Lenz, Christof; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (MPDI, 2019-09-23)
    Comparative genomics has greatly facilitated the identification of shared as well as unique features among individual cells or tissues, and thus offers the potential to find disease markers. While proteomics is recognized for its potential to generate quantitative maps of protein expression, comparative proteomics in bacteria has been largely restricted to the comparison of single cell lines or mutant strains. In this study, we used a data independent acquisition (DIA) technique, which enables global protein quantification of large sample cohorts, to record the proteome profiles of overall 27 whole genome sequenced and transcriptionally profiled clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. Analysis of the proteome profiles across the 27 clinical isolates grown under planktonic and biofilm growth conditions led to the identification of a core biofilm-associated protein profile. Furthermore, we found that protein-to-mRNA ratios between different P. aeruginosa strains are well correlated, indicating conserved patterns of post-transcriptional regulation. Uncovering core regulatory pathways, which drive biofilm formation and associated antibiotic tolerance in bacterial pathogens, promise to give clues to interactions between bacterial species and their environment and could provide useful targets for new clinical interventions to combat biofilm-associated infections.
  • Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis- and Toxocara cati-induced neurotoxocarosis.

    Waindok, Patrick; Janecek-Erfurth, Elisabeth; Lindenwald, Dimitri; Wilk, Esther; Schughart, Klaus; Geffers, Robert; Balas, Laurence; Durand, Thierry; Rund, Katharina Maria; Schebb, Nils Helge; et al. (PLOS, 2019-09-01)
    BACKGROUND: Somatic migration of Toxocara canis- and T. cati-larvae in humans may cause neurotoxocarosis (NT) when larvae accumulate and persist in the central nervous system (CNS). Host- or parasite-induced immunoregulatory processes contribute to the pathogenesis; however, detailed data on involvement of bioactive lipid mediators, e.g. oxylipins or eico-/docosanoids, which are involved in the complex molecular signalling network during infection and inflammation, are lacking. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate if T. canis- and T. cati-induced NT affects the homeostasis of oxylipins during the course of infection, a comprehensive lipidomic profiling in brains (cerebra and cerebella) of experimentally infected C57BL/6J mice was conducted at six different time points post infection (pi) by liquid-chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). Only minor changes were detected regarding pro-inflammatory prostaglandins (cyclooxygenase pathway). In contrast, a significant increase of metabolites resulting from lipoxygenase pathways was observed for both infection groups and brain regions, implicating a predominantly anti-inflammatory driven immune response. This observation was supported by a significantly increased 13-hydroxyoctadecadienoic acid (HODE)/9-HODE ratio during the subacute phase of infection, indicating an anti-inflammatory response to neuroinfection. Except for the specialised pro-resolving mediator (SPM) neuroprotectin D1 (NPD1), which was detected in mice infected with both pathogens during the subacute phase of infection, no other SPMs were detected. CONCLUSIONS/SIGNIFICANCE: The obtained results demonstrate the influence of Toxocara spp. on oxylipins as part of the immune response of the paratenic hosts. Furthermore, this study shows differences in the alteration of the oxylipin composition between T. canis- and T. cati-brain infection. Results contribute to a further understanding of the largely unknown pathogenesis and mechanisms of host-parasite interactions during NT.
  • HuR Small-Molecule Inhibitor Elicits Differential Effects in Adenomatosis Polyposis and Colorectal Carcinogenesis.

    Lang, Michaela; Berry, David; Passecker, Katharina; Mesteri, Ildiko; Bhuju, Sabin; Ebner, Florian; Sedlyarov, Vitaly; Evstatiev, Rayko; Dammann, Kyle; Loy, Alexander; et al. (American Association for Cancer Research, 2017-05-01)
    HuR is an RNA-binding protein implicated in immune homeostasis and various cancers, including colorectal cancer. HuR binding to AU-rich elements within the 3' untranslated region of mRNAs encoding oncogenes, growth factors, and various cytokines leads message stability and translation. In this study, we evaluated HuR as a small-molecule target for preventing colorectal cancer in high-risk groups such as those with familial adenomatosis polyposis (FAP) or inflammatory bowel disease (IBD). In human specimens, levels of cytoplasmic HuR were increased in colonic epithelial cells from patients with IBD, IBD-cancer, FAP-adenoma, and colorectal cancer, but not in patients with IBD-dysplasia. Intraperitoneal injection of the HuR small-molecule inhibitor MS-444 in AOM/DSS mice, a model of IBD and inflammatory colon cancer, augmented DSS-induced weight loss and increased tumor multiplicity, size, and invasiveness. MS-444 treatment also abrogated tumor cell apoptosis and depleted tumor-associated eosinophils, accompanied by a decrease in IL18 and eotaxin-1. In contrast, HuR inhibition in APCMin mice, a model of FAP and colon cancer, diminished the number of small intestinal tumors generated. In this setting, fecal microbiota, evaluated by 16S rRNA gene amplicon sequencing, shifted to a state of reduced bacterial diversity, with an increased representation of Prevotella, Akkermansia, and Lachnospiraceae Taken together, our results indicate that HuR activation is an early event in FAP-adenoma but is not present in IBD-dysplasia. Furthermore, our results offer a preclinical proof of concept for HuR inhibition as an effective means of FAP chemoprevention, with caution advised in the setting of IBD. Cancer Res; 77(9); 2424-38. ©2017 AACR.
  • Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation

    Scharf, Gesine M.; Kilian, Katja; Cordero, Julio; Wang, Yong; Grund, Andrea; Hofmann, Melanie; Froese, Natali; Wang, Xue; Kispert, Andreas; Kist, Ralf; et al. (American Society for Clinical Investigation, 2019-08-08)
    Fibrotic scarring drives the progression of heart failure after myocardial infarction (MI). Therefore, the development of specific treatment regimens to counteract fibrosis is of high clinical relevance. The transcription factor SOX9 functions as an important regulator during embryogenesis, but recent data point towards an additional causal role in organ fibrosis. We show here that SOX9 is upregulated in the scar after MI in mice. Fibroblast specific deletion of Sox9 ameliorated MI-induced left ventricular dysfunction, dilatation and myocardial scarring in vivo. Unexpectedly, deletion of Sox9 also potently eliminated persisting leukocyte infiltration of the scar in the chronic phase after MI. RNA-sequencing from the infarct scar revealed that Sox9 deletion in fibroblasts resulted in strongly downregulated expression of genes related to extracellular matrix, proteolysis and inflammation. Importantly, Sox9 deletion in isolated cardiac fibroblasts in vitro similarly affected gene expression as in the cardiac scar and reduced fibroblast proliferation, migration and contraction capacity. Together, our data demonstrate that fibroblast SOX9 functions as a master regulator of cardiac fibrosis and inflammation and might constitute a novel therapeutic target during MI.
  • Genetically diverse Pseudomonas aeruginosa populations display similar transcriptomic profiles in a cystic fibrosis explanted lung.

    Kordes, Adrian; Preusse, Matthias; Willger, Sven D; Braubach, Peter; Jonigk, Danny; Haverich, Axel; Warnecke, Gregor; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-07-30)
    Previous studies have demonstrated substantial genetic diversification of Pseudomonas aeruginosa across sub-compartments in cystic fibrosis (CF) lungs. Here, we isolate P. aeruginosa from five different sampling areas in the upper and lower airways of an explanted CF lung, analyze ex vivo transcriptional profiles by RNA-seq, and use colony re-sequencing and deep population sequencing to determine the genetic diversity within and across the various sub-compartments. We find that, despite genetic variation, the ex vivo transcriptional profiles of P. aeruginosa populations inhabiting different regions of the CF lung are similar. Although we cannot estimate the extent to which the transcriptional response recorded here actually reflects the in vivo transcriptomes, our results indicate that there may be a common in vivo transcriptional profile in the CF lung environment.
  • Production of norspermidine contributes to aminoglycoside resistance in pmrAB mutants of Pseudomonas aeruginosa.

    Bolard, Arnaud; Schniederjans, Monika; Haussler, Susanne; Triponney, Pauline; Valot, Benoît; Plesiat, Patrick; Jeannot, Katy; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (American Society of microbiology, 2019-08-05)
    Emergence of resistance to polymyxins in Pseudomonas aeruginosa is mainly due to mutations in two-components systems, that promote addition of 4-amino-4-deoxy-L-arabinose to the lipopolysaccharide (LPS) through upregulation of operon arnBCADTEF-ugd (arn) expression. Here, we demonstrate that mutations occurring in different domains of histidine kinase PmrB or in response regulator PmrA result in coresistance to aminoglycosides and colistin. All seventeen clinical strains tested exhibiting such a cross-resistance phenotype were found to be pmrAB mutants. As shown by gene deletion experiments, the decreased susceptibility of the mutants to aminoglycosides was independent from operon arn but required the efflux system MexXY(OprM) and the products of three genes, PA4773-PA4774-PA4775, that are cotranscribed and activated with genes pmrAB Gene PA4773 (annotated as speD2 in PAO1 genome) and PA4774 (speE2) are predicted to encode enzymes involved in biosynthesis of polyamines. Comparative analysis of cell surface extracts of an in vitro selected pmrAB mutant, called AB16.2, and derivatives lacking PA4773, PA4774 and PA4775, respectively revealed that these genes were needed for norspermidine production via a pathway that likely uses 1,3-diaminoprane, a precursor of polyamines. Altogether, our results suggest that norspermidine decreases the self-promoted uptake pathway of aminoglycosides across the outer membrane and thereby potentiates the activity of efflux pump MexXY(OprM).
  • Establishment of an induced memory response in Pseudomonas aeruginosa during infection of a eukaryotic host.

    Kordes, Adrian; Grahl, Nora; Koska, Michal; Preusse, Matthias; Arce-Rodriguez, Alejandro; Abraham, Wolf-Rainer; Kaever, Volkhard; Häussler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Springer-Nature, 2019-08-01)
    In a given habitat, bacterial cells often experience recurrent exposures to the same environmental stimulus. The ability to memorize the past event and to adjust current behaviors can lead to efficient adaptation to the recurring stimulus. Here we demonstrate that the versatile bacterium Pseudomonas aeruginosa adopts a virulence phenotype after serial passage in the invertebrate model host Galleria mellonella. The virulence phenotype was not linked to the acquisition of genetic variations and was sustained for several generations, despite cultivation of the ex vivo virulence-adapted P. aeruginosa cells under rich medium conditions in vitro. Transcriptional reprogramming seemed to be induced by a host-specific food source, as reprogramming was also observed upon cultivation of P. aeruginosa in rich medium supplemented with polyunsaturated long-chain fatty acids. The establishment of induced memory responses adds a time dimension and seems to fill the gap between long-term evolutionary genotypic adaptation and short-term induced individual responses. Efforts to unravel the fundamental mechanisms that underlie the carry-over effect to induce such memory responses will continue to be of importance as hysteretic behavior can serve survival of bacterial populations in changing and challenging habitats.
  • Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection.

    Tang, Benjamin M; Shojaei, Maryam; Teoh, Sally; Meyers, Adrienne; Ho, John; Ball, T Blake; Keynan, Yoav; Pisipati, Amarnath; Kumar, Aseem; Eisen, Damon P; et al. (Springer-Nature, 2019-07-31)
    Severe influenza infection has no effective treatment available. One of the key barriers to developing host-directed therapy is a lack of reliable prognostic factors needed to guide such therapy. Here, we use a network analysis approach to identify host factors associated with severe influenza and fatal outcome. In influenza patients with moderate-to-severe diseases, we uncover a complex landscape of immunological pathways, with the main changes occurring in pathways related to circulating neutrophils. Patients with severe disease display excessive neutrophil extracellular traps formation, neutrophil-inflammation and delayed apoptosis, all of which have been associated with fatal outcome in animal models. Excessive neutrophil activation correlates with worsening oxygenation impairment and predicted fatal outcome (AUROC 0.817-0.898). These findings provide new evidence that neutrophil-dominated host response is associated with poor outcomes. Measuring neutrophil-related changes may improve risk stratification and patient selection, a critical first step in developing host-directed immune therapy.
  • Clustered core- and pan-genome content on Rhodobacteraceae chromosomes.

    Kopejtka, Karel; Lin, Yan; Jakubovičová, Markéta; Koblížek, Michal; Tomasch, Jürgen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxford University Press, 2019-07-03)
    In Bacteria, chromosome replication starts at a single origin of replication and proceeds on both replichores. Due to its asymmetric nature, replication influences chromosome structure and gene organization, mutation rate and expression. To date, little is known about the distribution of highly conserved genes over the bacterial chromosome. Here, we used a set of 101 fully-sequenced Rhodobacteraceae representatives to analyze the relationship between conservation of genes within this family and their distance from the origin of replication. Twenty-two of the analyzed species had core genes clustered significantly closer to the origin of replication with representatives of the genus Celeribacter being the most apparent example. Interestingly, there were also eight species with the opposite organization. In particular Rhodobaca barguzinensis and Loktanella vestfoldensis showed a significant increase of core genes with distance from the origin of replication. The uneven distribution of low-conserved regions is in particular pronounced for genomes in which the halves of one replichore differ in their conserved gene content. Phage integration and horizontal gene transfer partially explain the scattered nature of Rhodobacteraceae genomes. Our findings lay the foundation for a better understanding of bacterial genome evolution and the role of replication therein.
  • Non-invasive, ratiometric determination of intracellular pH in Pseudomonas species using a novel genetically encoded indicator.

    Arce-Rodríguez, Alejandro; Volke, Daniel C; Bense, Sarina; Häussler, Susanne; Nikel, Pablo I; HZI, Helmholtz -Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (Wiley Open, 2019-07-01)
    The ability of Pseudomonas species to thrive in all major natural environments (i.e. terrestrial, freshwater and marine) is based on its exceptional capability to adapt to physicochemical changes. Thus, environmental bacteria have to tightly control the maintenance of numerous physiological traits across different conditions. The intracellular pH (pHi ) homoeostasis is a particularly important feature, since the pHi influences a large portion of the biochemical processes in the cell. Despite its importance, relatively few reliable, easy-to-implement tools have been designed for quantifying in vivo pHi changes in Gram-negative bacteria with minimal manipulations. Here we describe a convenient, non-invasive protocol for the quantification of the pHi in bacteria, which is based on the ratiometric fluorescent indicator protein PHP (pH indicator for Pseudomonas). The DNA sequence encoding PHP was thoroughly adapted to guarantee optimal transcription and translation of the indicator in Pseudomonas species. Our PHP-based quantification method demonstrated that pHi is tightly regulated over a narrow range of pH values not only in Pseudomonas, but also in other Gram-negative bacterial species such as Escherichia coli. The maintenance of the cytoplasmic pH homoeostasis in vivo could also be observed upon internal (e.g. redirection of glucose consumption pathways in P. putida) and external (e.g. antibiotic exposure in P. aeruginosa) perturbations, and the PHP indicator was also used to follow dynamic changes in the pHi upon external pH shifts. In summary, our work describes a reliable method for measuring pHi in Pseudomonas, allowing for the detailed investigation of bacterial pHi homoeostasis and its regulation.
  • Progressive Immunodeficiency with Gradual Depletion of B and CD4⁺ T Cells in Immunodeficiency, Centromeric Instability and Facial Anomalies Syndrome 2 (ICF2).

    Sogkas, Georgios; Dubrowinskaja, Natalia; Bergmann, Anke K; Lentes, Jana; Ripperger, Tim; Fedchenko, Mykola; Ernst, Diana; Jablonka, Alexandra; Geffers, Robert; Baumann, Ulrich; et al. (MPDI, 2019-04-04)
    Immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2) is a rare autosomal recessive primary immunodeficiency disorder. So far, 27 patients have been reported. Here, we present three siblings with ICF2 due to a homozygous ZBTB24 gene mutation (c.1222 T>G, p. (Cys408Gly)). Immune deficiency in these patients ranged from late-onset combined immunodeficiency (CID) with severe respiratory tract infections and recurrent shingles to asymptomatic selective antibody deficiency. Evident clinical heterogeneity manifested despite a common genetic background, suggesting the pathogenic relevance of epigenetic modification. Immunological follow-up reveals a previously unidentified gradual depletion of B and CD4+ T cells in all three presented patients with transition of a common variable immunodeficiency (CVID)-like disease to late-onset-CID in one of them. Considering all previously published cases with ICF2, we identify inadequate antibody responses to vaccines and reduction in CD27+ memory B cells as prevalent immunological traits. High mortality among ICF2 patients (20%) together with the progressive course of immunodeficiency suggest that hematopoietic stem cell transplantation (HSCT) should be considered as a treatment option in due time.
  • Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury.

    Sonnenschein, Kristina; Fiedler, Jan; Pfanne, Angelika; Just, Annette; Mitzka, Saskia; Geffers, Robert Robert; Pich, Andreas; Bauersachs, Johann; Thum, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxford Academic, 2019-03-07)
    Aims Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury. Methods and results Left common carotid arteries of C57BL/6 mice were electrically denudated and endothelial regeneration was evaluated. Profiling of RNA-binding proteins revealed dysregulated expression of Rbm38 in the denudated and regenerated areas. We next tested the importance of Rbm38 in human umbilical vein endothelial cells (HUVECS) and analysed its effects on cellular proliferation, migration and apoptosis. Rbm38 silencing in vitro demonstrated important beneficial functional effects on migratory capacity and proliferation of endothelial cells. In vivo, local silencing of Rbm38 also improved re-endothelialization of denuded carotid arteries. Luciferase reporter assay identified miR-98 and let-7f to regulate Rbm38 and the positive proliferative properties of Rbm38 silencing in vitro and in vivo were mimicked by therapeutic overexpression of these miRNAs. Conclusion The present data identified Rbm38 as an important factor of the regulation of various endothelial cell functions. Local inhibition of Rbm38 as well as overexpression of the upstream regulators miR-98 and let-7f improved endothelial regeneration in vivo and thus may be a novel therapeutic entry point to avoid endothelial damage after balloon angioplasty.
  • Integrated Transcriptional Regulatory Network of Quorum Sensing, Replication Control, and SOS Response in .

    Koppenhöfer, Sonja; Wang, Hui; Scharfe, Maren; Kaever, Volkhard; Wagner-Döbler, Irene; Tomasch, Jürgen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
    Quorum sensing (QS) coordinates population wide gene expression of bacterial species. Highly adaptive traits like gene transfer agents (GTA), morphological heterogeneity, type 4 secretion systems (T4SS), and flagella are QS controlled in Dinoroseobacter shibae, a Roseobacter model organism. Its QS regulatory network is integrated with the CtrA phosphorelay that controls cell division in alphaproteobacteria. To elucidate the network topology, we analyzed the transcriptional response of the QS-negative D. shibae strain ΔluxI1 toward externally added autoinducer (AI) over a time period of 3 h. The signaling cascade is initiated by the CtrA phosphorelay, followed by the QS genes and other target genes, including the second messenger c-di-GMP, competence, flagella and pili. Identification of transcription factor binding sites in promoters of QS induced genes revealed the integration of QS, CtrA phosphorelay and the SOS stress response mediated by LexA. The concentration of regulatory genes located close to the origin or terminus of replication suggests that gene regulation and replication are tightly coupled. Indeed, addition of AI first stimulates and then represses replication. The restart of replication comes along with increased c-di-GMP levels. We propose a model in which QS induces replication followed by differentiation into GTA producing and non-producing cells. CtrA-activity is controlled by the c-di-GMP level, allowing some of the daughter cells to replicate again. The size of the GTA producing subpopulation is tightly controlled by QS via the AI Synthase LuxI2. Finally, induction of the SOS response allows for integration of GTA DNA into the host chromosome.
  • Spatiotemporal control of FlgZ activity impacts Pseudomonas aeruginosa flagellar motility.

    Bense, Sarina; Bruchmann, Sebastian; Steffen, Anika; Stradal, Theresia E B; Häussler, Susanne; Düvel, Juliane; HZI, Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig Germany. (Wiley-Blackwell, 2019-03-12)
    The c-di-GMP-binding effector protein FlgZ has been demonstrated to control motility in the opportunistic pathogen Pseudomonas aeruginosa and it was suggested that c-di-GMP-bound FlgZ impedes motility via its interaction with the MotCD stator. To further understand how motility is downregulated in P. aeruginosa and to elucidate the general control mechanisms operating during bacterial growth, we examined the spatiotemporal activity of FlgZ. We re-annotated the P. aeruginosaflgZ open reading frame and demonstrated that FlgZ-mediated downregulation of motility is fine-tuned via three independent mechanisms. First, we found that flgZ gene is transcribed independently from flgMN in stationary growth phase to increase FlgZ protein levels in the cell. Second, FlgZ localizes to the cell pole upon c-di-GMP binding and third, we describe that FimV, a cell pole anchor protein, is involved in increasing the polar localized c-di-GMP bound FlgZ to inhibit both, swimming and swarming motility. Our results shed light on the complex dynamics and spatiotemporal control of c-di-GMP-dependent bacterial motility phenotypes and on how the polar anchor protein FimV, the motor brake FlgZ and the stator proteins function to repress flagella-driven swimming and swarming motility.
  • Community richness of amphibian skin bacteria correlates with bioclimate at the global scale.

    Kueneman, Jordan G; Bletz, Molly C; McKenzie, Valerie J; Becker, C Guilherme; Joseph, Maxwell B; Abarca, Juan G; Archer, Holly; Arellano, Ana Lisette; Bataille, Arnaud; Becker, Matthew; et al. (Dpringer-Nature, 2019-03-01)
    Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.
  • Identification and quantification of (t)RNA modifications in Pseudomonas aeruginosa by liquid chromatography-tandem mass spectrometry.

    Grobe, Svenja; Doberenz, Sebastian; Ferreira, Kevin; Krueger, Jonas; Brönstrup, Mark; Kaever, Volkhard; Häußler, Susanne; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Wiley-Blackwell, 2019-01-15)
    Transfer RNA (tRNA) modifications impact the structure and function of tRNAs thus affecting the efficiency and fidelity of translation. In the opportunistic pathogen Pseudomonas aeruginosa translational regulation plays an important but less defined role in the adaptation to changing environments. In this study, we explored tRNA modifications in P. aeruginosa using LC-MS/MS based approaches. Neutral Loss Scan (NLS) demonstrated the potential to identify previously unknown modifications, while Multiple Reaction Monitoring (MRM) can detect modifications with high specificity and sensitivity. In this study, the MRM-based external calibration method allowed for quantification of the 4 canonical and 32 modified ribonucleosides, of which 21 tRNA modifications were quantified in the total tRNA pool of P. aeruginosa PA14. We also purified the single tRNA isoacceptors tRNA-ArgUCU, tRNA-LeuCAA and tRNA-TrpCCA and determined, both qualitatively and quantitatively, their specific modification pattern. Deeper insights into the nature and dynamics of tRNA modifications in P. aeruginosa will pave the way for further studies on posttranscriptional gene regulation as a relatively unexplored molecular mechanism of controlling bacterial pathogenicity and life style.
  • AgNPs Change Microbial Community Structures of Wastewater.

    Guo, Yuting; Cichocki, Nicolas; Schattenberg, Florian; Geffers, Robert; Harms, Hauke; Müller, Susann; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2018-01-01)
    Due to their strong antimicrobial activity, silver nanoparticles (AgNPs) are massively produced, applied, consumed and, as a negative consequence, released into wastewater treatment plants. Most AgNPs are assumed to be bound by sludge, and thus bear potential risk for microbial performance and stability. In this lab-scale study, flow cytometry as a high-throughput method and 16S rRNA gene amplicon Illumina MiSeq sequencing were used to track microbial community structure changes when being exposed to AgNPs. Both methods allowed deeper investigation of the toxic impact of chemicals on microbial communities than classical EC50 determination. In addition, ecological metrics were used to quantify microbial community variations depending on AgNP types (10 and 30 nm) and concentrations. Only low changes in α- and intra-community β-diversity values were found both in successive negative and positive control batches and batches that were run with AgNPs below the EC50 value. Instead, AgNPs at EC50 concentrations caused upcoming of certain and disappearance of formerly dominant subcommunities. Flavobacteriia were among those that almost disappeared, while phylotypes affiliated with Gammaproteobacteria (3.6-fold) and Bacilli (8.4-fold) increased in cell abundance in comparison to the negative control. Thus, silver amounts at the EC50 value affected community structure suggesting a potential negative impact on functions in wastewater treatment systems.
  • Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica.

    Arce-Rodríguez, Alejandro; Puente-Sánchez, Fernando; Avendaño, Roberto; Martínez-Cruz, María; de Moor, J Maarten; Pieper, Dietmar H; Chavarría, Max; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2019-01-01)
    Here we report the chemical and microbial characterization of the surface water of a CO2-rich hydrothermal vent known in Costa Rica as Borbollones, located at Tenorio Volcano National Park. The Borbollones showed a temperature surrounding 60 °C, a pH of 2.4 and the gas released has a composition of ~ 97% CO2, ~ 0.07% H2S, ~ 2.3% N2 and ~ 0.12% CH4. Other chemical species such as sulfate and iron were found at high levels with respect to typical fresh water bodies. Analysis by 16S rRNA gene metabarcoding revealed that in Borbollones predominates an archaeon from the order Thermoplasmatales and one bacterium from the genus Sulfurimonas. Other sulfur- (genera Thiomonas, Acidithiobacillus, Sulfuriferula, and Sulfuricurvum) and iron-oxidizing bacteria (genera Sideroxydans, Gallionella, and Ferrovum) were identified. Our results show that CO2-influenced surface water of Borbollones contains microorganisms that are usually found in acid rock drainage environments or sulfur-rich hydrothermal vents. To our knowledge, this is the first microbiological characterization of a CO2-dominated hydrothermal spring from Central America and expands our understanding of those extreme ecosystems.
  • Importance of flagella in acute and chronic Pseudomonas aeruginosa infections.

    Lorenz, Anne; Preuße, Matthias; Bruchmann, Sebastian; Pawar, Vinay; Grahl, Nora; Pils, Marina C; Nolan, Laura M; Filloux, Alain; Weiss, Siegfried; Häussler, Susanne; et al. (Wiley-Blackwell, 2018-11-08)
    Pseudomonas aeruginosa is an environmental microorganism and a causative agent of diverse acute and chronic, biofilm-associated infections. Advancing research-based knowledge on its adaptation to conditions within the human host is bound to reveal novel strategies and targets for therapeutic intervention. Here, we investigated the traits that P. aeruginosa PA14 as well as a virulence attenuated ΔlasR mutant need to survive in selected murine infection models. Experimentally, the genetic programs that the bacteria use to adapt to biofilm-associated versus acute infections were dissected by passaging transposon mutant libraries through mouse lungs (acute) or mouse tumours (biofilm-infection). Adaptive metabolic changes of P. aeruginosa were generally required during both infection processes. Counter-selection against flagella expression was observed during acute lung infections. Obviously, avoidance of flagella-mediated activation of host immunity is advantageous for the wildtype bacteria. For the ΔlasR mutant, loss of flagella did not confer a selective advantage. Apparently, other pathogenesis mechanisms are active in this virulence attenuated strain. In contrast, the infective process of P. aeruginosa in the chronic biofilm model apparently required expression of flagellin. Together, our findings imply that the host immune reactions against the infectious agent are very decisive for acuteness and duration of the infectious disease. They direct disease outcome.
  • Presence of Infected Gr-1CD11bCD11c Monocytic Myeloid Derived Suppressor Cells Subverts T Cell Response and Is Associated With Impaired Dendritic Cell Function in Mycobacterium avium-Infected Mice.

    Abdissa, Ketema; Nerlich, Andreas; Beineke, Andreas; Ruangkiattikul, Nanthapon; Pawar, Vinay; Heise, Ulrike; Janze, Nina; Falk, Christine; Bruder, Dunja; Schleicher, Ulrike; et al. (2018-01-01)
    Myeloid-derived suppressor cells (MDSC) are immature myeloid cells with immunomodulatory function. To study the mechanism by which MDSC affect antimicrobial immunity, we infected mice with two M. avium strains of differential virulence, highly virulent Mycobacterium avium subsp. avium strain 25291 (MAA) and low virulent Mycobacterium avium subsp. hominissuis strain 104 (MAH). Intraperitoneal infection with MAA, but not MAH, caused severe disease and massive splenic infiltration of monocytic MDSC (M-MDSC; Gr-1intCD11bhiCD11cint) expressing inducible NO synthase (Nos2) and bearing high numbers of mycobacteria. Depletion experiments demonstrated that M-MDSC were essential for disease progression. NO production by M-MDSC influenced antigen-uptake and processing by dendritic cells and proliferation of CD4+ T cells. M-MDSC were also induced in MAA-infected mice lacking Nos2. In these mice CD4+ T cell expansion and control of infection were restored. However, T cell inhibition was only partially relieved and arginase (Arg) 1-expressing M-MDSC were accumulated. Likewise, inhibition of Arg1 also partially rescued T cell proliferation. Thus, mycobacterial virulence results in the induction of M-MDSC that block the T cell response in a Nos2- and Arg1-dependent manner.

View more