• Login
    Search 
    •   Home
    • Dept. of molecular bacteriology (MOBA)
    • publications of the departmentment of molecular bacteriology(MOBA)
    • Search
    •   Home
    • Dept. of molecular bacteriology (MOBA)
    • publications of the departmentment of molecular bacteriology(MOBA)
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of HZICommunitiesTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)This CollectionTitleAuthorsIssue DateSubmit DateSubjectsJournalTypesSubject (MeSH)

    My Account

    LoginRegister

    Filter by Category

    JournalmBio (3)Environmental microbiology (1)FEMS microbiology letters (1)Genome announcements (1)Infection and immunity (1)View MoreAuthors
    Eckweiler, Denitsa (12)
    Häussler, Susanne (10)Bielecka, Agata (7)Nicolai, Tanja (4)Pohl, Sarah (4)View MoreYear (Issue Date)2015 (5)2014 (4)2012 (1)2016 (1)2017 (1)Types
    Article (13)

    Local Links

    About: PolicyHelmholtz-Zentrum für Infektionsforschung HomepageHZI-Library HomepageContact usOpen AccessPublishing ApproachGetting StartedEditing ProfileBrowsing OptionsUsing SearchSubmitting Content

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-10 of 13

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 13CSV
    • 13RefMan
    • 13EndNote
    • 13BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Complete Genome Sequence of Highly Adherent Pseudomonas aeruginosa Small-Colony Variant SCV20265.

    Eckweiler, Denitsa; Bunk, Boyke; Spröer, Cathrin; Overmann, Jörg; Häussler, Susanne (2014)
    The evolution of small-colony variants within Pseudomonas aeruginosa populations chronically infecting the cystic fibrosis lung is one example of the emergence of adapted subpopulations. Here, we present the complete genome sequence of the autoaggregative and hyperpiliated P. aeruginosa small-colony variant SCV20265, which was isolated from a cystic fibrosis (CF) patient.
    Thumbnail

    The extensive set of accessory Pseudomonas aeruginosa genomic components.

    Pohl, Sarah; Klockgether, Jens; Eckweiler, Denitsa; Khaledi, Ariane; Schniederjans, Monika; Chouvarine, Philippe; Tümmler, Burkhard; Häussler, Susanne (2014-07)
    Up to 20% of the chromosomal Pseudomonas aeruginosa DNA belong to the so-called accessory genome. Its elements are specific for subgroups or even single strains and are likely acquired by horizontal gene transfer (HGT). Similarities of the accessory genomic elements to DNA from other bacterial species, mainly the DNA of γ- and β-proteobacteria, indicate a role of interspecies HGT. In this study, we analysed the expression of the accessory genome in 150 clinical P. aeruginosa isolates as uncovered by transcriptome sequencing and the presence of accessory genes in eleven additional isolates. Remarkably, despite the large number of P. aeruginosa strains that have been sequenced to date, we found new strain-specific compositions of accessory genomic elements and a high portion (10-20%) of genes without P. aeruginosa homologues. Although some genes were detected to be expressed/present in several isolates, individual patterns regarding the genes, their functions and the possible origin of the DNA were widespread among the tested strains. Our results demonstrate the unaltered potential to discover new traits within the P. aeruginosa population and underline that the P. aeruginosa pangenome is likely to increase with increasing sequence information.
    Thumbnail

    In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles.

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc; Häussler, Susanne (2014)
    mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Importance: Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.
    Thumbnail

    Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity.

    Blanka, Andrea; Schulz, Sebastian; Eckweiler, Denitsa; Franke, Raimo; Bielecka, Agata; Nicolai, Tanja; Casilag, Fiordiligie; Düvel, Juliane; Abraham, Wolf-Rainer; Kaever, Volkhard; Häussler, Susanne (2014-01)
    Pseudomonas aeruginosa is distinguished by its broad metabolic diversity and its remarkable capability for adaptation, which relies on a large collection of transcriptional regulators and alternative sigma (σ) factors. The largest group of alternative σ factors is that of the extracytoplasmic function (ECF) σ factors, which control key transduction pathways for maintenance of envelope homeostasis in response to external stress and cell growth. In addition, there are specific roles of alternative σ factors in regulating the expression of virulence and virulence-associated genes. Here, we analyzed a deletion mutant of the ECF σ factor SigX and applied mRNA profiling to define the SigX-dependent regulon in P. aeruginosa in response to low-osmolarity-medium conditions. Furthermore, the combination of transcriptional data with chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) led to the identification of the DNA binding motif of SigX. Genome-wide mapping of SigX-binding regions revealed enrichment of downstream genes involved in fatty acid biosynthesis, type III secretion, swarming and cyclic di-GMP (c-di-GMP) signaling. In accordance, a sigX deletion mutant exhibited altered fatty acid composition of the cell membrane, reduced cytotoxicity, impaired swarming activity, elevated c-di-GMP levels, and increased biofilm formation. In conclusion, a combination of ChIP-seq with transcriptional profiling and bioinformatic approaches to define consensus DNA binding sequences proved to be effective for the elucidation of the regulon of the alternative σ factor SigX, revealing its role in complex virulence-associated phenotypes in P. aeruginosa.
    Thumbnail

    Contribution of Veillonella parvula to Pseudomonas aeruginosa-mediated pathogenicity in a murine tumor model system.

    Pustelny, Christian; Komor, Uliana; Pawar, Vinay; Lorenz, Anne; Bielecka, Agata; Moter, Annette; Gocht, Benjamin; Eckweiler, Denitsa; Müsken, Mathias; Grothe, Claudia; Lünsdorf, Heinrich; Weiss, Siegfried; Häussler, Susanne (2015-01)
    The recent finding that high numbers of strict anaerobes are present in the respiratory tract of cystic fibrosis (CF) patients has drawn attention to the pathogenic contribution of the CF microbiome to airway disease. In this study, we investigated the specific interactions of the most dominant bacterial CF pathogen, Pseudomonas aeruginosa, with the anaerobic bacterium Veillonella parvula, which has been recovered at comparable cell numbers from the respiratory tract of CF patients. In addition to growth competition experiments, transcriptional profiling, and analyses of biofilm formation by in vitro studies, we used our recently established in vivo murine tumor model to investigate mutual influences of the two pathogens during a biofilm-associated infection process. We found that P. aeruginosa and V. parvula colonized distinct niches within the tumor. Interestingly, significantly higher cell numbers of P. aeruginosa could be recovered from the tumor tissue when mice were coinfected with both bacterial species than when mice were monoinfected with P. aeruginosa. Concordantly, the results of in vivo transcriptional profiling implied that the presence of V. parvula supports P. aeruginosa growth at the site of infection in the host, and the higher P. aeruginosa load correlated with clinical deterioration of the host. Although many challenges must be overcome to dissect the specific interactions of coinfecting bacteria during an infection process, our findings exemplarily demonstrate that the complex interrelations between coinfecting microorganisms and the immune responses determine clinical outcome to a much greater extent than previously anticipated.
    Thumbnail

    The Pseudomonas aeruginosa Transcriptional Landscape Is Shaped by Environmental Heterogeneity and Genetic Variation.

    Dötsch, Andreas; Schniederjans, Monika; Khaledi, Ariane; Hornischer, Klaus; Schulz, Sebastian; Bielecka, Agata; Eckweiler, Denitsa; Pohl, Sarah; Häussler, Susanne (2015)
    Phenotypic variability among bacteria depends on gene expression in response to different environments, and it also reflects differences in genomic structure. In this study, we analyzed transcriptome sequencing (RNA-seq) profiles of 151 Pseudomonas aeruginosa clinical isolates under standard laboratory conditions and of one P. aeruginosa type strain under 14 different environmental conditions. Our approach allowed dissection of the impact of the genetic background versus environmental cues on P. aeruginosa gene expression profiles and revealed that phenotypic variation was larger in response to changing environments than between genomically different isolates. We demonstrate that mutations within the global regulator LasR affect more than one trait (pleiotropy) and that the interaction between mutations (epistasis) shapes the P. aeruginosa phenotypic plasticity landscape. Because of pleiotropic and epistatic effects, average genotype and phenotype measures appeared to be uncorrelated in P. aeruginosa.
    Thumbnail

    Elucidation of Sigma Factor-Associated Networks in Pseudomonas aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk.

    Schulz, Sebastian; Eckweiler, Denitsa; Bielecka, Agata; Nicolai, Tanja; Franke, Raimo; Dötsch, Andreas; Hornischer, Klaus; Bruchmann, Sebastian; Düvel, Juliane; Häussler, Susanne (2015-03)
    Sigma factors are essential global regulators of transcription initiation in bacteria which confer promoter recognition specificity to the RNA polymerase core enzyme. They provide effective mechanisms for simultaneously regulating expression of large numbers of genes in response to challenging conditions, and their presence has been linked to bacterial virulence and pathogenicity. In this study, we constructed nine his-tagged sigma factor expressing and/or deletion mutant strains in the opportunistic pathogen Pseudomonas aeruginosa. To uncover the direct and indirect sigma factor regulons, we performed mRNA profiling, as well as chromatin immunoprecipitation coupled to high-throughput sequencing. We furthermore elucidated the de novo binding motif of each sigma factor, and validated the RNA- and ChIP-seq results by global motif searches in the proximity of transcriptional start sites (TSS). Our integrated approach revealed a highly modular network architecture which is composed of insulated functional sigma factor modules. Analysis of the interconnectivity of the various sigma factor networks uncovered a limited, but highly function-specific, crosstalk which orchestrates complex cellular processes. Our data indicate that the modular structure of sigma factor networks enables P. aeruginosa to function adequately in its environment and at the same time is exploited to build up higher-level functions by specific interconnections that are dominated by a participation of RpoN.
    Thumbnail

    Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W.; Frank, Ronald; Häussler, Susanne (2016-01-01)
    ABSTRACT High levels of the universal bacterial second messenger cyclic di-GMP (c-di-GMP) promote the establishment of surface-attached growth in many bacteria. Not only can c-di-GMP bind to nucleic acids and directly control gene expression, but it also binds to a diverse array of proteins of specialized functions and orchestrates their activity. Since its development in the early 1990s, the synthetic peptide array technique has become a powerful tool for high-throughput approaches and was successfully applied to investigate the binding specificity of protein-ligand interactions. In this study, we used peptide arrays to uncover the c-di-GMP binding site of a Pseudomonas aeruginosa protein (PA3740) that was isolated in a chemical proteomics approach. PA3740 was shown to bind c-di-GMP with a high affinity, and peptide arrays uncovered LKKALKKQTNLR to be a putative c-di-GMP binding motif. Most interestingly, different from the previously identified c-di-GMP binding motif of the PilZ domain (RXXXR) or the I site of diguanylate cyclases (RXXD), two leucine residues and a glutamine residue and not the charged amino acids provided the key residues of the binding sequence. Those three amino acids are highly conserved across PA3740 homologs, and their singular exchange to alanine reduced c-di-GMP binding within the full-length protein. IMPORTANCE In many bacterial pathogens the universal bacterial second messenger c-di-GMP governs the switch from the planktonic, motile mode of growth to the sessile, biofilm mode of growth. Bacteria adapt their intracellular c-di-GMP levels to a variety of environmental challenges. Several classes of c-di-GMP binding proteins have been structurally characterized, and diverse c-di-GMP binding domains have been identified. Nevertheless, for several c-di-GMP receptors, the binding motif remains to be determined. Here we show that the use of a synthetic peptide array allowed the identification of a c-di-GMP binding motif of a putative c-di-GMP receptor protein in the opportunistic pathogen P. aeruginosa . The application of synthetic peptide arrays will facilitate the search for additional c-di-GMP receptor proteins and aid in the characterization of c-di-GMP binding motifs.
    Thumbnail

    Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa.

    Bielecki, Piotr; Jensen, Vanessa; Schulze, Wiebke; Gödeke, Julia; Strehmel, Janine; Eckweiler, Denitsa; Nicolai, Tanja; Bielecka, Agata; Wille, Thorsten; Gerlach, Roman G; Häussler, Susanne (2015-07-27)
    Two-component systems (TCS) serve as stimulus-response coupling mechanisms to allow organisms to adapt to a variety of environmental conditions. The opportunistic pathogen Pseudomonas aeruginosa encodes for more than 100 TCS components. To avoid unwanted cross-talk, signaling cascades are very specific, with one sensor talking to its cognate response regulator (RR). However, cross-regulation may provide means to integrate different environmental stimuli into a harmonized output response. By applying a split luciferase complementation assay, we identified a functional interaction of two RRs of the OmpR/PhoB subfamily, namely PhoB and TctD in P. aeruginosa. Transcriptional profiling, ChIP-seq analysis and a global motif scan uncovered the regulons of the two RRs as well as a quadripartite binding motif in six promoter regions. Phosphate limitation resulted in PhoB-dependent expression of the downstream genes, whereas the presence of TctD counteracted this activation. Thus, the integration of two important environmental signals e.g. phosphate availability and the carbon source are achieved by a titration of the relative amounts of two phosphorylated RRs that inversely regulate a common subset of genes. In conclusion, our results on the PhoB and TctD mediated two-component signal transduction pathways exemplify how P. aeruginosa may exploit cross-regulation to adapt bacterial behavior to complex environments.
    Thumbnail

    Deep transcriptome profiling of clinical Klebsiella pneumoniae isolates reveals strain and sequence type-specific adaptation.

    Bruchmann, Sebastian; Muthukumarasamy, Uthayakumar; Pohl, Sarah; Preusse, Matthias; Bielecka, Agata; Nicolai, Tanja; Hamann, Isabell; Hillert, Roger; Kola, Axel; Gastmeier, Petra; Eckweiler, Denitsa; Häussler, Susanne (2015-11)
    Health-care-associated infections by multi-drug-resistant bacteria constitute one of the greatest challenges to modern medicine. Bacterial pathogens devise various mechanisms to withstand the activity of a wide range of antimicrobial compounds, among which the acquisition of carbapenemases is one of the most concerning. In Klebsiella pneumoniae, the dissemination of the K. pneumoniae carbapenemase is tightly connected to the global spread of certain clonal lineages. Although antibiotic resistance is a key driver for the global distribution of epidemic high-risk clones, there seem to be other adaptive traits that may explain their success. Here, we exploited the power of deep transcriptome profiling (RNA-seq) to shed light on the transcriptomic landscape of 37 clinical K. pneumoniae isolates of diverse phylogenetic origins. We identified a large set of 3346 genes which was expressed in all isolates. While the core-transcriptome profiles varied substantially between groups of different sequence types, they were more homogenous among isolates of the same sequence type. We furthermore linked the detailed information on differentially expressed genes with the clinically relevant phenotypes of biofilm formation and bacterial virulence. This allowed for the identification of a diminished expression of biofilm-specific genes within the low biofilm producing ST258 isolates as a sequence type-specific trait.
    • 1
    • 2
    DSpace software copyright © 2002-2019  DuraSpace
    Quick Guide | Kontakt | Feedback abschicken
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.