• Multiplex profiling of inflammation-related bioactive lipid mediators in Toxocara canis- and Toxocara cati-induced neurotoxocarosis.

      Waindok, Patrick; Janecek-Erfurth, Elisabeth; Lindenwald, Dimitri; Wilk, Esther; Schughart, Klaus; Geffers, Robert; Balas, Laurence; Durand, Thierry; Rund, Katharina Maria; Schebb, Nils Helge; et al. (PLOS, 2019-09-01)
      BACKGROUND: Somatic migration of Toxocara canis- and T. cati-larvae in humans may cause neurotoxocarosis (NT) when larvae accumulate and persist in the central nervous system (CNS). Host- or parasite-induced immunoregulatory processes contribute to the pathogenesis; however, detailed data on involvement of bioactive lipid mediators, e.g. oxylipins or eico-/docosanoids, which are involved in the complex molecular signalling network during infection and inflammation, are lacking. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate if T. canis- and T. cati-induced NT affects the homeostasis of oxylipins during the course of infection, a comprehensive lipidomic profiling in brains (cerebra and cerebella) of experimentally infected C57BL/6J mice was conducted at six different time points post infection (pi) by liquid-chromatography coupled to electrospray tandem mass spectrometry (LC-ESI-MS/MS). Only minor changes were detected regarding pro-inflammatory prostaglandins (cyclooxygenase pathway). In contrast, a significant increase of metabolites resulting from lipoxygenase pathways was observed for both infection groups and brain regions, implicating a predominantly anti-inflammatory driven immune response. This observation was supported by a significantly increased 13-hydroxyoctadecadienoic acid (HODE)/9-HODE ratio during the subacute phase of infection, indicating an anti-inflammatory response to neuroinfection. Except for the specialised pro-resolving mediator (SPM) neuroprotectin D1 (NPD1), which was detected in mice infected with both pathogens during the subacute phase of infection, no other SPMs were detected. CONCLUSIONS/SIGNIFICANCE: The obtained results demonstrate the influence of Toxocara spp. on oxylipins as part of the immune response of the paratenic hosts. Furthermore, this study shows differences in the alteration of the oxylipin composition between T. canis- and T. cati-brain infection. Results contribute to a further understanding of the largely unknown pathogenesis and mechanisms of host-parasite interactions during NT.
    • Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation

      Scharf, Gesine M.; Kilian, Katja; Cordero, Julio; Wang, Yong; Grund, Andrea; Hofmann, Melanie; Froese, Natali; Wang, Xue; Kispert, Andreas; Kist, Ralf; et al. (American Society for Clinical Investigation, 2019-08-08)
      Fibrotic scarring drives the progression of heart failure after myocardial infarction (MI). Therefore, the development of specific treatment regimens to counteract fibrosis is of high clinical relevance. The transcription factor SOX9 functions as an important regulator during embryogenesis, but recent data point towards an additional causal role in organ fibrosis. We show here that SOX9 is upregulated in the scar after MI in mice. Fibroblast specific deletion of Sox9 ameliorated MI-induced left ventricular dysfunction, dilatation and myocardial scarring in vivo. Unexpectedly, deletion of Sox9 also potently eliminated persisting leukocyte infiltration of the scar in the chronic phase after MI. RNA-sequencing from the infarct scar revealed that Sox9 deletion in fibroblasts resulted in strongly downregulated expression of genes related to extracellular matrix, proteolysis and inflammation. Importantly, Sox9 deletion in isolated cardiac fibroblasts in vitro similarly affected gene expression as in the cardiac scar and reduced fibroblast proliferation, migration and contraction capacity. Together, our data demonstrate that fibroblast SOX9 functions as a master regulator of cardiac fibrosis and inflammation and might constitute a novel therapeutic target during MI.
    • Neutrophils-related host factors associated with severe disease and fatality in patients with influenza infection.

      Tang, Benjamin M; Shojaei, Maryam; Teoh, Sally; Meyers, Adrienne; Ho, John; Ball, T Blake; Keynan, Yoav; Pisipati, Amarnath; Kumar, Aseem; Eisen, Damon P; et al. (Springer-Nature, 2019-07-31)
      Severe influenza infection has no effective treatment available. One of the key barriers to developing host-directed therapy is a lack of reliable prognostic factors needed to guide such therapy. Here, we use a network analysis approach to identify host factors associated with severe influenza and fatal outcome. In influenza patients with moderate-to-severe diseases, we uncover a complex landscape of immunological pathways, with the main changes occurring in pathways related to circulating neutrophils. Patients with severe disease display excessive neutrophil extracellular traps formation, neutrophil-inflammation and delayed apoptosis, all of which have been associated with fatal outcome in animal models. Excessive neutrophil activation correlates with worsening oxygenation impairment and predicted fatal outcome (AUROC 0.817-0.898). These findings provide new evidence that neutrophil-dominated host response is associated with poor outcomes. Measuring neutrophil-related changes may improve risk stratification and patient selection, a critical first step in developing host-directed immune therapy.
    • Progressive Immunodeficiency with Gradual Depletion of B and CD4⁺ T Cells in Immunodeficiency, Centromeric Instability and Facial Anomalies Syndrome 2 (ICF2).

      Sogkas, Georgios; Dubrowinskaja, Natalia; Bergmann, Anke K; Lentes, Jana; Ripperger, Tim; Fedchenko, Mykola; Ernst, Diana; Jablonka, Alexandra; Geffers, Robert; Baumann, Ulrich; et al. (MPDI, 2019-04-04)
      Immunodeficiency, centromeric instability and facial anomalies syndrome 2 (ICF2) is a rare autosomal recessive primary immunodeficiency disorder. So far, 27 patients have been reported. Here, we present three siblings with ICF2 due to a homozygous ZBTB24 gene mutation (c.1222 T>G, p. (Cys408Gly)). Immune deficiency in these patients ranged from late-onset combined immunodeficiency (CID) with severe respiratory tract infections and recurrent shingles to asymptomatic selective antibody deficiency. Evident clinical heterogeneity manifested despite a common genetic background, suggesting the pathogenic relevance of epigenetic modification. Immunological follow-up reveals a previously unidentified gradual depletion of B and CD4+ T cells in all three presented patients with transition of a common variable immunodeficiency (CVID)-like disease to late-onset-CID in one of them. Considering all previously published cases with ICF2, we identify inadequate antibody responses to vaccines and reduction in CD27+ memory B cells as prevalent immunological traits. High mortality among ICF2 patients (20%) together with the progressive course of immunodeficiency suggest that hematopoietic stem cell transplantation (HSCT) should be considered as a treatment option in due time.
    • Therapeutic modulation of RNA-binding protein Rbm38 facilitates re-endothelialization after arterial injury.

      Sonnenschein, Kristina; Fiedler, Jan; Pfanne, Angelika; Just, Annette; Mitzka, Saskia; Geffers, Robert Robert; Pich, Andreas; Bauersachs, Johann; Thum, Thomas; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Oxford Academic, 2019-03-07)
      Aims Delayed re-endothelialization after balloon angioplasty in patients with coronary or peripheral artery disease impairs vascular healing and leads to neointimal proliferation. In the present study, we examined the effect of RNA-binding motif protein 38 (Rbm38) during re-endothelialization in a murine model of experimental vascular injury. Methods and results Left common carotid arteries of C57BL/6 mice were electrically denudated and endothelial regeneration was evaluated. Profiling of RNA-binding proteins revealed dysregulated expression of Rbm38 in the denudated and regenerated areas. We next tested the importance of Rbm38 in human umbilical vein endothelial cells (HUVECS) and analysed its effects on cellular proliferation, migration and apoptosis. Rbm38 silencing in vitro demonstrated important beneficial functional effects on migratory capacity and proliferation of endothelial cells. In vivo, local silencing of Rbm38 also improved re-endothelialization of denuded carotid arteries. Luciferase reporter assay identified miR-98 and let-7f to regulate Rbm38 and the positive proliferative properties of Rbm38 silencing in vitro and in vivo were mimicked by therapeutic overexpression of these miRNAs. Conclusion The present data identified Rbm38 as an important factor of the regulation of various endothelial cell functions. Local inhibition of Rbm38 as well as overexpression of the upstream regulators miR-98 and let-7f improved endothelial regeneration in vivo and thus may be a novel therapeutic entry point to avoid endothelial damage after balloon angioplasty.
    • Community richness of amphibian skin bacteria correlates with bioclimate at the global scale.

      Kueneman, Jordan G; Bletz, Molly C; McKenzie, Valerie J; Becker, C Guilherme; Joseph, Maxwell B; Abarca, Juan G; Archer, Holly; Arellano, Ana Lisette; Bataille, Arnaud; Becker, Matthew; et al. (Dpringer-Nature, 2019-03-01)
      Animal-associated microbiomes are integral to host health, yet key biotic and abiotic factors that shape host-associated microbial communities at the global scale remain poorly understood. We investigated global patterns in amphibian skin bacterial communities, incorporating samples from 2,349 individuals representing 205 amphibian species across a broad biogeographic range. We analysed how biotic and abiotic factors correlate with skin microbial communities using multiple statistical approaches. Global amphibian skin bacterial richness was consistently correlated with temperature-associated factors. We found more diverse skin microbiomes in environments with colder winters and less stable thermal conditions compared with environments with warm winters and less annual temperature variation. We used bioinformatically predicted bacterial growth rates, dormancy genes and antibiotic synthesis genes, as well as inferred bacterial thermal growth optima to propose mechanistic hypotheses that may explain the observed patterns. We conclude that temporal and spatial characteristics of the host's macro-environment mediate microbial diversity.
    • Integrated Transcriptional Regulatory Network of Quorum Sensing, Replication Control, and SOS Response in .

      Koppenhöfer, Sonja; Wang, Hui; Scharfe, Maren; Kaever, Volkhard; Wagner-Döbler, Irene; Tomasch, Jürgen; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2019-01-01)
      Quorum sensing (QS) coordinates population wide gene expression of bacterial species. Highly adaptive traits like gene transfer agents (GTA), morphological heterogeneity, type 4 secretion systems (T4SS), and flagella are QS controlled in Dinoroseobacter shibae, a Roseobacter model organism. Its QS regulatory network is integrated with the CtrA phosphorelay that controls cell division in alphaproteobacteria. To elucidate the network topology, we analyzed the transcriptional response of the QS-negative D. shibae strain ΔluxI1 toward externally added autoinducer (AI) over a time period of 3 h. The signaling cascade is initiated by the CtrA phosphorelay, followed by the QS genes and other target genes, including the second messenger c-di-GMP, competence, flagella and pili. Identification of transcription factor binding sites in promoters of QS induced genes revealed the integration of QS, CtrA phosphorelay and the SOS stress response mediated by LexA. The concentration of regulatory genes located close to the origin or terminus of replication suggests that gene regulation and replication are tightly coupled. Indeed, addition of AI first stimulates and then represses replication. The restart of replication comes along with increased c-di-GMP levels. We propose a model in which QS induces replication followed by differentiation into GTA producing and non-producing cells. CtrA-activity is controlled by the c-di-GMP level, allowing some of the daughter cells to replicate again. The size of the GTA producing subpopulation is tightly controlled by QS via the AI Synthase LuxI2. Finally, induction of the SOS response allows for integration of GTA DNA into the host chromosome.
    • Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice.

      Koestner, Wolfgang; Spanier, Julia; Klause, Tanja; Tegtmeyer, Pia-K; Becker, Jennifer; Herder, Vanessa; Borst, Katharina; Todt, Daniel; Lienenklaus, Stefan; Gerhauser, Ingo; et al. (2018-08-01)
      During Coxsackievirus B3 (CVB3) infection hepatitis is a potentially life threatening complication, particularly in newborns. Studies with type I interferon (IFN-I) receptor (IFNAR)-deficient mice revealed a key role of the IFN-I axis in the protection against CVB3 infection, whereas the source of IFN-I and cell types that have to be IFNAR triggered in order to promote survival are still unknown. We found that CVB3 infected IFN-β reporter mice showed effective reporter induction, especially in hepatocytes and only to a minor extent in liver-resident macrophages. Accordingly, upon in vitro CVB3 infection of primary hepatocytes from murine or human origin abundant IFN-β responses were induced. To identify sites of IFNAR-triggering we performed experiments with Mx reporter mice, which upon CVB3 infection showed massive luciferase induction in the liver. Immunohistological studies revealed that during CVB3 infection MX1 expression of hepatocytes was induced primarily by IFNAR-, and not by IFN-III receptor (IFNLR)-triggering. CVB3 infection studies with primary human hepatocytes, in which either the IFN-I or the IFN-III axis was inhibited, also indicated that primarily IFNAR-, and to a lesser extent IFNLR-triggering was needed for ISG induction. Interestingly, CVB3 infected mice with a hepatocyte-specific IFNAR ablation showed severe liver cell necrosis and ubiquitous viral dissemination that resulted in lethal disease, as similarly detected in classical IFNAR-/- mice. In conclusion, we found that during CVB3 infection hepatocytes are major IFN-I producers and that the liver is also the organ that shows strong IFNAR-triggering. Importantly, hepatocytes need to be IFNAR-triggered in order to prevent virus dissemination and to assure survival. These data are compatible with the hypothesis that during CVB3 infection hepatocytes serve as important IFN-I producers and sensors not only in the murine, but also in the human system.
    • Metatranscriptome Analysis of the Vaginal Microbiota Reveals Potential Mechanisms for Protection against Metronidazole in Bacterial Vaginosis.

      Deng, Zhi-Luo; Gottschick, Cornelia; Bhuju, Sabin; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-27)
      Bacterial vaginosis (BV) is a prevalent multifactorial disease of women in their reproductive years characterized by a shift from the
    • Exome sequencing and case-control analyses identify RCC1 as a candidate breast cancer susceptibility gene.

      Riahi, Aouatef; Radmanesh, Hoda; Schürmann, Peter; Bogdanova, Natalia; Geffers, Robert; Meddeb, Rym; Kharrat, Maher; Dörk, Thilo; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-15)
      Breast cancer is a genetic disease but the known genes explain a minority of cases. To elucidate the molecular basis of breast cancer in the Tunisian population, we performed exome sequencing on six BRCA1/BRCA2 mutation-negative patients with familial breast cancer and identified a novel frameshift mutation in RCC1, encoding the Regulator of Chromosome Condensation 1. Subsequent genotyping detected the 19-bp deletion in additional 5 out of 153 (3%) breast cancer patients but in none of 400 female controls (p = 0.0015). The deletion was enriched in patients with a positive family history (5%, p = 0.0009) and co-segregated with breast cancer in the initial pedigree. The mutant allele was lost in 4/6 breast tumors from mutation carriers which may be consistent with the hypothesis that RCC1 dysfunction provides a selective disadvantage at the stage of tumor progression. In summary, we propose RCC1 as a likely breast cancer susceptibility gene in the Tunisian population.
    • Birth, evolution, and transmission of satellite-free mammalian centromeric domains.

      Nergadze, Solomon G; Piras, Francesca M; Gamba, Riccardo; Corbo, Marco; Cerutti, Federico; McCarter, Joseph G W; Cappelletti, Eleonora; Gozzo, Francesco; Harman, Rebecca M; Antczak, Douglas F; et al. (2018-01-01)
      Mammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on
    • AgNPs Change Microbial Community Structures of Wastewater.

      Guo, Yuting; Cichocki, Nicolas; Schattenberg, Florian; Geffers, Robert; Harms, Hauke; Müller, Susann; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Frontiers, 2018-01-01)
      Due to their strong antimicrobial activity, silver nanoparticles (AgNPs) are massively produced, applied, consumed and, as a negative consequence, released into wastewater treatment plants. Most AgNPs are assumed to be bound by sludge, and thus bear potential risk for microbial performance and stability. In this lab-scale study, flow cytometry as a high-throughput method and 16S rRNA gene amplicon Illumina MiSeq sequencing were used to track microbial community structure changes when being exposed to AgNPs. Both methods allowed deeper investigation of the toxic impact of chemicals on microbial communities than classical EC50 determination. In addition, ecological metrics were used to quantify microbial community variations depending on AgNP types (10 and 30 nm) and concentrations. Only low changes in α- and intra-community β-diversity values were found both in successive negative and positive control batches and batches that were run with AgNPs below the EC50 value. Instead, AgNPs at EC50 concentrations caused upcoming of certain and disappearance of formerly dominant subcommunities. Flavobacteriia were among those that almost disappeared, while phylotypes affiliated with Gammaproteobacteria (3.6-fold) and Bacilli (8.4-fold) increased in cell abundance in comparison to the negative control. Thus, silver amounts at the EC50 value affected community structure suggesting a potential negative impact on functions in wastewater treatment systems.
    • Distribution and Evolution of Peroxisomes in Alveolates (Apicomplexa, Dinoflagellates, Ciliates).

      Ludewig-Klingner, Ann-Kathrin; Michael, Victoria; Jarek, Michael; Brinkmann, Henner; Petersen, Jörn; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
      The peroxisome was the last organelle to be discovered and five decades later it is still the Cinderella of eukaryotic compartments. Peroxisomes have a crucial role in the detoxification of reactive oxygen species, the beta-oxidation of fatty acids, and the biosynthesis of etherphospholipids, and they are assumed to be present in virtually all aerobic eukaryotes. Apicomplexan parasites including the malaria and toxoplasmosis agents were described as the first group of mitochondriate protists devoid of peroxisomes. This study was initiated to reassess the distribution and evolution of peroxisomes in the superensemble Alveolata (apicomplexans, dinoflagellates, ciliates). We established transcriptome data from two chromerid algae (Chromera velia, Vitrella brassicaformis), and two dinoflagellates (Prorocentrum minimum, Perkinsus olseni) and identified the complete set of essential peroxins in all four reference species. Our comparative genome analysis provides unequivocal evidence for the presence of peroxisomes in Toxoplasma gondii and related genera. Our working hypothesis of a common peroxisomal origin of all alveolates is supported by phylogenetic analyses of essential markers such as the import receptor Pex5. Vitrella harbors the most comprehensive set of peroxisomal proteins including the catalase and the glyoxylate cycle and it is thus a promising model organism to investigate the functional role of this organelle in Apicomplexa.
    • Packaging of Dinoroseobacter shibae DNA into Gene Transfer Agent Particles Is Not Random.

      Tomasch, Jürgen; Wang, Hui; Hall, April T K; Patzelt, Diana; Preusse, Matthias; Petersen, Jörn; Brinkmann, Henner; Bunk, Boyke; Bhuju, Sabin; Jarek, Michael; et al. (2018-01-01)
      Gene transfer agents (GTAs) are phage-like particles which contain a fragment of genomic DNA of the bacterial or archaeal producer and deliver this to a recipient cell. GTA gene clusters are present in the genomes of almost all marine Rhodobacteraceae (Roseobacters) and might be important contributors to horizontal gene transfer in the world's oceans. For all organisms studied so far, no obvious evidence of sequence specificity or other nonrandom process responsible for packaging genomic DNA into GTAs has been found. Here, we show that knock-out of an autoinducer synthase gene of Dinoroseobacter shibae resulted in overproduction and release of functional GTA particles (DsGTA). Next-generation sequencing of the 4.2-kb DNA fragments isolated from DsGTAs revealed that packaging was not random. DNA from low-GC conjugative plasmids but not from high-GC chromids was excluded from packaging. Seven chromosomal regions were strongly overrepresented in DNA isolated from DsGTA. These packaging peaks lacked identifiable conserved sequence motifs that might represent recognition sites for the GTA terminase complex. Low-GC regions of the chromosome, including the origin and terminus of replication, were underrepresented in DNA isolated from DsGTAs. DNA methylation reduced packaging frequency while the level of gene expression had no influence. Chromosomal regions found to be over- and underrepresented in DsGTA-DNA were regularly spaced. We propose that a "headful" type of packaging is initiated at the sites of coverage peaks and, after linearization of the chromosomal DNA, proceeds in both directions from the initiation site. GC-content, DNA-modifications, and chromatin structure might influence at which sides GTA packaging can be initiated.
    • Decreased production of class-switched antibodies in neonatal B cells is associated with increased expression of miR-181b.

      Glaesener, Stephanie; Jaenke, Christine; Habener, Anika; Geffers, Robert; Hagendorff, Petra; Witzlau, Katrin; Imelmann, Esther; Krueger, Andreas; Meyer-Bahlburg, Almut; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018)
      The increased susceptibility to infections of neonates is caused by an immaturity of the immune system as a result of both qualitative and quantitative differences between neonatal and adult immune cells. With respect to B cells, neonatal antibody responses are known to be decreased. Accountable for this is an altered composition of the neonatal B cell compartment towards more immature B cells. However, it remains unclear whether the functionality of individual neonatal B cell subsets is altered as well. In the current study we therefore compared phenotypical and functional characteristics of corresponding neonatal and adult B cell subpopulations. No phenotypic differences could be identified with the exception of higher IgM expression in neonatal B cells. Functional analysis revealed differences in proliferation, survival, and B cell receptor signaling. Most importantly, neonatal B cells showed severely impaired class-switch recombination (CSR) to IgG and IgA. This was associated with increased expression of miR-181b in neonatal B cells. Deficiency of miR-181b resulted in increased CSR. With this, our results highlight intrinsic differences that contribute to weaker B cell antibody responses in newborns.
    • Global micro RNA expression profiling in the liver biopsies of Hepatitis B Virus infected patients suggests specific miRNA signatures for viral persistence and hepatocellular injury.

      Singh, Avishek Kumar; Rooge, Sheetalnath Babasaheb; Varshney, Aditi; Vasudevan, Madavan; Bhardwaj, Ankit; Venugopal, Senthil Kumar; Trehanpati, Nirupama; Kumar, Manoj; Geffers, Robert; Kumar, Vijay; et al. (2017-11-30)
      Hepatitis B virus (HBV) can manipulate the miRNA regulatory networks in infected cells to create a permissive environment for viral replication, cellular injury, disease onset and its progression. The aim of the present study was to understand the miRNA networks and their target genes in the liver of hepatitis B patients involved in HBV replication, liver injury and liver fibrosis. We investigated differentially expressed miRNAs by microarray in the liver biopsy samples from different stages of HBV infection and liver disease [immune tolerant (IT; n= 8); acute viral hepatitis (AVH; n=8); no fibrosis (n=16); early (F1+F2) (n=19) or late fibrosis (F3+F4) (n=14) and healthy controls (n=7)]. The miRNA expression levels were analyzed by the unsupervised principal component analysis (PCA) and hierarchical clustering. Analysis of miRNA-mRNA regulatory networks identified 17 miRNAs and 18 target gene interactions with four distinct nodes each representing a stage-specific gene regulation during disease progression. The IT group showed elevated miR-199a-5p, miR-221-3p and Let-7a-3p levels which could target genes involved in innate immune response and viral replication. In AVH group, miR-125b-5p and miR-3613-3p were up whereas miR-940 was down which might affect cell proliferation via STAT3 pathway. In early fibrosis, miR-34b-3p, miR-1224-3p and miR-1227-3p were up while miR-499a-5p was down which together, possibly mediate chronic inflammation. In advanced fibrosis, miR-1, miR-10b-5p, miR-96-5p, miR-133b and miR-671-5p were up while miR-20b-5p and miR-455-3p were down, possibly allowing chronic disease progression. Interestingly, only 8 of 17 liver-specific miRNAs exhibited a similar expression pattern in patient sera.
    • The Biofilm Inhibitor Carolacton Enters Gram-Negative Cells: Studies Using a TolC-Deficient Strain of Escherichia coli.

      Donner, Jannik; Reck, Michael; Bunk, Boyke; Jarek, Michael; App, Constantin Benjamin; Meier-Kolthoff, Jan P; Overmann, Jörg; Müller, Rolf; Kirschning, Andreas; Wagner-Döbler, Irene; et al. (2017-11-01)
      The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of E. coli TolC at similar concentrations as for streptococci. This inhibition is completely lost for a C-9 (R) epimer of carolacton, a derivative with an inverted stereocenter at carbon atom 9 [(S) → (R)] as the sole difference from the native molecule, which is also inactive in S. pneumoniae and S. mutans, suggesting a specific interaction of native carolacton with a conserved cellular target present in bacterial phyla as distantly related as Firmicutes and Proteobacteria. The efflux pump inhibitor (EPI) phenylalanine arginine β-naphthylamide (PAβN), which specifically inhibits AcrAB-TolC, renders E. coli susceptible to carolacton. Our data indicate that carolacton has potential for use in antimicrobial chemotherapy against Gram-negative bacteria, as a single drug or in combination with EPIs. Strain E. coli TolC has been deposited at the DSMZ; together with the associated RNA-seq data and MIC values, it can be used as a reference during future screenings for novel bioactive compounds. IMPORTANCE The emergence of pathogens resistant against most or all of the antibiotics currently used in human therapy is a global threat, and therefore the search for antimicrobials with novel targets and modes of action is of utmost importance. The myxobacterial secondary metabolite carolacton had previously been shown to inhibit biofilm formation and growth of streptococci. Here, we investigated if carolacton could act against Gram-negative bacteria, which are difficult targets because of their double-layered cytoplasmic envelope. We found that the model organism Escherichia coli is susceptible to carolacton, similar to the Gram-positive Streptococcus pneumoniae, if its multidrug efflux system AcrAB-TolC is either inactivated genetically, by disruption of the tolC gene, or physiologically by coadministering an efflux pump inhibitor. A carolacton epimer that has a different steric configuration at carbon atom 9 is completely inactive, suggesting that carolacton may interact with the same molecular target in both Gram-positive and Gram-negative bacteria.
    • Draft Genome Sequence of Zoonotic Streptococcus canis Isolate G361.

      Eichhorn, Inga; van der Linden, Mark; Jarek, Michael; Fulde, Marcus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-09-21)
      Here, we report the draft genome sequence of an SCM-positive Streptococcus canis strain, G361, isolated from a vaginal swab of a 40-year-old woman. The draft genome comprises 2,045,931 bp in 62 contigs.
    • Phylotranscriptomic consolidation of the jawed vertebrate timetree.

      Irisarri, Iker; Baurain, Denis; Brinkmann, Henner; Delsuc, Frédéric; Sire, Jean-Yves; Kupfer, Alexander; Petersen, Jörn; Jarek, Michael; Meyer, Axel; Vences, Miguel; et al. (2017-09-01)
      Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.
    • Complete Genome Sequence of JII-1961, a Bovine Mycobacterium avium subsp. paratuberculosis Field Isolate from Germany.

      Möbius, Petra; Nordsiek, Gabriele; Hölzer, Martin; Jarek, Michael; Marz, Manja; Köhler, Heike; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-24)
      Mycobacterium avium subsp. paratuberculosis causes Johne's disease in ruminants and was also detected in nonruminant species, including human beings, and in milk products. We announce here the 4.829-Mb complete genome sequence of the cattle-type strain JII-1961 from Germany, which is very similar to cattle-type strains recovered from different continents.