Recent Submissions

  • Screening for inhibitors of mutacin synthesis in Streptococcus mutans using fluorescent reporter strains.

    Premnath, Priyanka; Reck, Michael; Wittstein, Kathrin; Stadler, Marc; Wagner-Döbler, Irene; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (BMC, 2018-03-27)
    Within the polymicrobial dental plaque biofilm, bacteria kill competitors by excreting mixtures of bacteriocins, resulting in improved fitness and survival. Inhibiting their bacteriocin synthesis might therefore be a useful strategy to eliminate specific pathogens. We used Streptococcus mutans, a highly acidogenic inhabitant of dental plaque, as a model and searched for natural products that reduced mutacin synthesis. To this end we fused the promoter of mutacin VI to the GFP+ gene and integrated the construct into the genome of S. mutans UA159 by single homologous recombination. The resulting reporter strain 423p - gfp + was used to screen 297 secondary metabolites from different sources, mainly myxobacteria and fungi, for their ability to reduce the fluorescence of the fully induced reporter strain by > 50% while growth was almost unaffected (> 90% of control). Seven compounds with different chemical structures and different modes of action were identified. Erinacine C was subsequently validated and shown to inhibit transcription of all three mutacins of S. mutans. The areas of the inhibition zones of the sensor strains S. sanguinis and Lactococcus lactis were reduced by 35% to 61% in comparison to controls in the presence of erinacine C, demonstrating that the amount of active mutacins in the culture supernatants of S. mutans was reduced. Erinacines are cyathane diterpenes that were extracted from cultures of the edible mushroom Hericium erinaceus. They have anti-inflammatory, antimicrobial and neuroprotective effects. For erinacine C, a new biological activity was found here. We demonstrate the successful development of a whole-cell fluorescent reporter for the screening of natural compounds and report that erinacine C suppresses mutacin synthesis in S. mutans without affecting cell viability.
  • Presence of Infected Gr-1CD11bCD11c Monocytic Myeloid Derived Suppressor Cells Subverts T Cell Response and Is Associated With Impaired Dendritic Cell Function in -Infected Mice.

    Abdissa, Ketema; Nerlich, Andreas; Beineke, Andreas; Ruangkiattikul, Nanthapon; Pawar, Vinay; Heise, Ulrike; Janze, Nina; Falk, Christine; Bruder, Dunja; Schleicher, Ulrike; Bogdan, Christian; Weiss, Siegfried; Goethe, Ralph; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (Drontiers, 2018-01-01)
    The Gram-negative bacterium, Helicobacter pylori, causes chronic gastritis, peptic ulcers, and gastric cancer in humans. Although the gastric epithelium is the primary site of H. pylori colonization, H. pylori can gain access to deeper tissues. Concurring with this notion, H. pylori has been found in the vicinity of endothelial cells in gastric submucosa. Endothelial cells play crucial roles in innate immune response, wound healing and tumorigenesis. This study examines the molecular mechanisms by which H. pylori interacts with and triggers inflammatory responses in endothelial cells. We observed that H. pylori infection of primary human endothelial cells stimulated secretion of the key inflammatory cytokines, interleukin-6 (IL-6) and interleukin-8 (IL-8). In particular, IL-8, a potent chemokine and angiogenic factor, was secreted by H. pylori-infected endothelial cells to levels ~10- to 20-fold higher than that typically observed in H. pylori-infected gastric epithelial cells. These inflammatory responses were triggered by the H. pylori type IV secretion system (T4SS) and the T4SS-associated adhesin CagL, but not the translocation substrate CagA. Moreover, in contrast to integrin α5β1 playing an essential role in IL-8 induction by H. pylori upon infection of gastric epithelial cells, both integrin α5β1 and integrin αvβ3 were dispensable for IL-8 induction in H. pylori-infected endothelial cells. However, epidermal growth factor receptor (EGFR) is crucial for mediating the potent H. pylori-induced IL-8 response in endothelial cells. This study reveals a novel mechanism by which the H. pylori T4SS and its adhesin subunit, CagL, may contribute to H. pylori pathogenesis by stimulating the endothelial innate immune responses, while highlighting EGFR as a potential therapeutic target for controlling H. pylori-induced inflammation. Introduction
  • Discovering RNA-Based Regulatory Systems for Virulence.

    Knittel, Vanessa; Vollmer, Ines; Volk, Marcel; Dersch, Petra; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-01-01)
    The genus Yersinia includes three human pathogenic species, Yersinia pestis, the causative agent of the bubonic and pneumonic plague, and enteric pathogens Y. enterocolitica and Y. pseudotuberculosis that cause a number of gut-associated diseases. Over the past years a large repertoire of RNA-based regulatory systems has been discovered in these pathogens using different RNA-seq based approaches. Among them are several conserved or species-specific RNA-binding proteins, regulatory and sensory RNAs as well as various RNA-degrading enzymes. Many of them were shown to control the expression of important virulence-relevant factors and have a very strong impact on Yersinia virulence. The precise targets, the molecular mechanism and their role for Yersinia pathogenicity is only known for a small subset of identified genus- or species-specific RNA-based control elements. However, the ongoing development of new RNA-seq based methods and data analysis methods to investigate the synthesis, composition, translation, decay, and modification of RNAs in the bacterial cell will help us to generate a more comprehensive view of Yersinia RNA biology in the near future
  • Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth.

    Villegas-Plazas, Marcela; Wos-Oxley, Melissa L; Sanchez, Juan A; Pieper, Dietmar H; Thomas, Olivier P; Junca, Howard; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-11-10)
    Xestospongia muta is among the most emblematic sponge species inhabiting coral reefs of the Caribbean Sea. Besides being the largest sponge species growing in the Caribbean, it is also known to produce secondary metabolites. This study aimed to assess the effect of depth and season on the symbiotic bacterial dynamics and major metabolite profiles of specimens of X. muta thriving in a tropical marine biome (Portobelo Bay, Panamá), which allow us to determine whether variability patterns are similar to those reported for subtropical latitudes. The bacterial assemblages were characterized using Illumina deep-sequencing and metabolomic profiles using UHPLC-DAD-ELSD from five depths (ranging 9-28 m) across two seasons (spring and autumn). Diverse symbiotic communities, representing 24 phyla with a predominance of Proteobacteria and Chloroflexi, were found. Although several thousands of OTUs were determined, most of them belong to the rare biosphere and only 23 to a core community. There was a significant difference between the structure of the microbial communities in respect to season (autumn to spring), with a further significant difference between depths only in autumn. This was partially mirrored in the metabolome profile, where the overall metabolite composition did not differ between seasons, but a significant depth gradient was observed in autumn. At the phyla level, Cyanobacteria, Firmicutes, Actinobacteria, and Spirochaete showed a mild-moderate correlation with the metabolome profile. The metabolomic profiles were mainly characterized by known brominated polyunsaturated fatty acids. This work presents findings about the composition and dynamics of the microbial assemblages of X. muta expanding and confirming current knowledge about its remarkable diversity and geographic variability as observed in this tropical marine biome.
  • Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS).

    Piwosz, Kasia; Shabarova, Tanja; Tomasch, Jürgen; Šimek, Karel; Kopejtka, Karel; Kahl, Silke; Pieper, Dietmar H; Koblížek, Michal; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-11-01)
    The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
  • Viable cyanobacteria in the deep continental subsurface.

    Puente-Sánchez, Fernando; Arce-Rodríguez, Alejandro; Oggerin, Monike; García-Villadangos, Miriam; Moreno-Paz, Mercedes; Blanco, Yolanda; Rodríguez, Nuria; Bird, Laurence; Lincoln, Sara A; Tornos, Fernando; Prieto-Ballesteros, Olga; Freeman, Katherine H; Pieper, Dietmar H; Timmis, Kenneth N; Amils, Ricardo; Parro, Víctor; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-16)
    Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present molecular, microscopic, and metagenomic evidence that cyanobacteria predominate in deep subsurface rock samples from the Iberian Pyrite Belt Mars analog (southwestern Spain). Metagenomics showed the potential for a hydrogen-based lithoautotrophic cyanobacterial metabolism. Collectively, our results suggest that they may play an important role as primary producers within the deep-Earth biosphere. Our description of this previously unknown ecological niche for cyanobacteria paves the way for models on their origin and evolution, as well as on their potential presence in current or primitive biospheres in other planetary bodies, and on the extant, primitive, and putative extraterrestrial biospheres.
  • Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota.

    Chalermwatanachai, Thanit; Vilchez-Vargas, Ramiro; Holtappels, Gabriele; Lacoere, Tim; Jáuregui, Ruy; Kerckhof, Frederiek-Maarten; Pieper, Dietmar H; Van de Wiele, Tom; Vaneechoutte, Mario; Van Zele, Thibaut; Bachert, Claus; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-05-21)
    Chronic rhinosinusitis with nasal polyp (CRSwNP) patients are often characterized by asthma comorbidity and a type-2 inflammation of the sinonasal mucosa. The mucosal microbiota has been suggested to be implicated in the persistence of inflammation, but associations have not been well defined. To compare the bacterial communities of healthy subjects with CRSwNP patients, we collected nasal swabs from 17 healthy subjects, 21 CRSwNP patients without asthma (CRSwNP-A), and 20 CRSwNP patients with co-morbid asthma (CRSwNP+A). We analysed the microbiota using high-throughput sequencing of the bacterial 16S rRNA. Bacterial communities were different between the three groups. Haemophilus influenzae was significantly enriched in CRSwNP patients, Propionibacterium acnes in the healthy group; Staphylococcus aureus was abundant in the CRSwNP-A group, even though present in 57% of patients. Escherichia coli was found in high amounts in CRSwNP+A patients. Nasal tissues of CRSwNP+A patients expressed significantly higher concentrations of IgE, SE-IgE, and IL-5 compared to those of CRSwNP-A patients. Co-cultivation demonstrated that P. acnes growth was inhibited by H. influenzae, E. coli and S. aureus. The nasal microbiota of healthy subjects are different from those of CRSwNP-A and CRSwNP+A patients. However, the most abundant species in healthy status could not inhibit those in CRSwNP disease.
  • Pathogenic functions of host microbiota.

    Rath, Silke; Rud, Tatjana; Karch, André; Pieper, Dietmar Helmut; Vital, Marius; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-28)
    It is becoming evident that certain features of human microbiota, encoded by distinct autochthonous taxa, promote disease. As a result, borders between the so-called opportunistic pathogens, pathobionts, and commensals are increasingly blurred, and specific targets for manipulating microbiota to improve host health are becoming elusive. In this study, we focus on the functions of host bacterial communities that have the potential to cause disease, proposing the term "pathogenic function (pathofunction)". The concept is presented via three distinct examples, namely, the formation of (i) trimethylamine, (ii) secondary bile acids, and (iii) hydrogen sulfide, which represent metabolites of the gut microbiota linked to the development of non-communicable diseases. Using publicly available metagenomic and metatranscriptomic data (n = 2975), we quantified those pathofunctions in health and disease and exposed the key players. Pathofunctions were ubiquitously present with increased abundances in patient groups. Overall, the three pathofunctions were detected at low mean concentrations (< 1% of total bacteria carried respective genes) and encompassed various taxa, including uncultured members. We outline how this function-centric approach, where all members of a community exhibiting a particular pathofunction are redundant, can contribute to risk assessment and the development of precision treatment directing gut microbiota to increase host health.
  • The olfactory epithelium as a port of entry in neonatal neurolisteriosis.

    Pägelow, Dennis; Chhatbar, Chintan; Beineke, Andreas; Liu, Xiaokun; Nerlich, Andreas; van Vorst, Kira; Rohde, Manfred; Kalinke, Ulrich; Förster, Reinhold; Halle, Stephan; Valentin-Weigand, Peter; Hornef, Mathias W; Fulde, Marcus; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH,Feodor-Lynen Str. 7, 30625 Hannover, Germany. (2018-10-15)
    Bacterial infections of the central nervous system (CNS) remain a major cause of mortality in the neonatal population. Commonly used parenteral infection models, however, do not reflect the early course of the disease leaving this critical step of the pathogenesis largely unexplored. Here, we analyzed nasal exposure of 1-day-old newborn mice to Listeria monocytogenes (Lm). We found that nasal, but not intragastric administration, led to early CNS infection in neonate mice. In particular, upon bacterial invasion of the olfactory epithelium, Lm subsequently spread along the sensory neurons entering the brain tissue at the cribriform plate and causing a significant influx of monocytes and neutrophils. CNS infection required listeriolysin for penetration of the olfactory epithelium and ActA, a mediator of intracellular mobility, for translocation into the brain tissue. Taken together, we propose an alternative port of entry and route of infection for neonatal neurolisteriosis and present a novel infection model to mimic the clinical features of late-onset disease in human neonates.
  • Metagenomic insights into resistant starch degradation by human gut microbiota.

    Vital, Marius; Howe, Adina; Bergeron, Nathalie; Krauss, Ronald M; Jansson, Janet K; Tiedje, James M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-28)
    Several studies monitoring alterations of the community structure upon resistant starch (RS) interventions are available, although comprehensive function-based analyses are lacking. Recently, a multiomics approach based on 16S rRNA gene-sequencing, metaproteomics and metabolomics on fecal samples from individuals subjected to high and low doses of type-2 RS (RS2; 48 g and 3 g/2500 kcal, respectively, daily for 2 weeks) in a cross-over intervention experiment was performed. In the present study, we did pathway-based metagenomic analyses on samples from a subset of individuals (n=12) from that study to get additional, detailed insights into the functional structure at high resolution during RS2 intervention. A mechanistic framework based on obtained results is proposed where primary degradation was governed by Firmicutes, with Ruminococcus bromii as a major taxon involved, providing fermentation substrates and increased acetate concentrations for growth of various major butyrate-producers exhibiting the enzyme butyryl-CoA:acetate CoA-transferase. H2-scavenging sulfite reducers and acetogens concurrently increased. Individual responses of gut microbiota were noted where seven of the 12 participants displayed all features of the outlined pattern, whereas four individuals showed mixed behavior and one subject was unresponsive. Intervention order did not affect the outcome emphasizing a constant substrate supply for maintaining specific functional communities.
  • Complete genome sequence of C130_2, a novel myovirus infecting pathogenic Escherichia coli and Shigella strains.

    Sváb, Domonkos; Falgenhauer, Linda; Rohde, Manfred; Chakraborty, Trinad; Tóth, István; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-09-20)
    The genome sequence of a novel virulent bacteriophage, named " C130_2", that is morphologically a member of the family Myoviridae is reported. The 41,775-base-pair double-stranded DNA genome of C130_2 contains 59 ORFs but exhibits overall low sequence similarity to bacteriophage genomes for which sequences are publicly available. Phylogenetic analysis indicated that C130_2 represents a new phage type. C130_2 could be propagated well on enterohemorrhagic Escherichia coli (EHEC) O157:H7 and other pathogenic E. coli strains, as well as on strains of various Shigella species.
  • The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury.

    Brandenberger, Christina; Kling, Katharina Maria; Vital, Marius; Christian, Mühlfeld; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-08-01)
    Acute lung injury (ALI) is associated with increased morbidity and mortality in the elderly (> 65 years), but the knowledge about origin and effects of immunosenescence in ALI is limited. Here, we investigated the immune response at pulmonary, systemic and cellular level in young (2-3 months) and old (18-19 months) C57BL/6J mice to localize and characterize effects of immunosenescence in ALI. ALI was induced by intranasal lipopolysaccharide (LPS) application and the animals were sacrificed 24 or 72 h later. Pulmonary inflammation was investigated by analyzing histopathology, bronchoalveolar lavage fluid (BALF) cytometry and cytokine expression. Systemic serum cytokine expression, spleen lymphocyte populations and the gut microbiome were analyzed, as well as activation of alveolar and bone marrow derived macrophages (BMDM)
  • Microbiome yarns: microbiome basis of memory,,.

    Timmis, Kenneth; Jebok, Franziska; Molinari, Gabriella; Rohde, Manfred; Timmis, James Kenneth; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
  • Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae.

    Heß, Nathalie; Waldow, Franziska; Kohler, Thomas P; Rohde, Manfred; Kreikemeyer, Bernd; Gómez-Mejia, Alejandro; Hain, Torsten; Schwudke, Dominik; Vollmer, Waldemar; Hammerschmidt, Sven; Gisch, Nicolas; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-12)
    Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly. Pneumococcal mutants deficient in TacL lack LTA and show attenuated virulence in mouse models of acute pneumonia and systemic infections, although they grow normally in culture. Hence, LTA is important for S. pneumoniae to establish systemic infections, and TacL represents a potential target for antimicrobial drug development.
  • Metatranscriptome Analysis of the Vaginal Microbiota Reveals Potential Mechanisms for Protection against Metronidazole in Bacterial Vaginosis.

    Deng, Zhi-Luo; Gottschick, Cornelia; Bhuju, Sabin; Masur, Clarissa; Abels, Christoph; Wagner-Döbler, Irene; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-27)
    Bacterial vaginosis (BV) is a prevalent multifactorial disease of women in their reproductive years characterized by a shift from the
  • Tracking gene expression and oxidative damage of O-stressed Clostridioides difficile by a multi-omics approach.

    Neumann-Schaal, Meina; Metzendorf, Nicole G; Troitzsch, Daniel; Nuss, Aaron Mischa; Hofmann, Julia Danielle; Beckstette, Michael; Dersch, Petra; Otto, Andreas; Sievers, Susanne; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-31)
    Clostridioides difficile is the major pathogen causing diarrhea following antibiotic treatment. It is considered to be a strictly anaerobic bacterium, however, previous studies have shown a certain and strain-dependent oxygen tolerance. In this study, the model strain C. difficile 630Δerm was shifted to micro-aerobiosis and was found to stay growing to the same extent as anaerobically growing cells with only few changes in the metabolite pattern. However, an extensive change in gene expression was determined by RNA-Seq. The most striking adaptation strategies involve a change in the reductive fermentation pathways of the amino acids proline, glycine and leucine. But also a far-reaching restructuring in the carbohydrate metabolism was detected with changes in the phosphotransferase system (PTS) facilitated uptake of sugars and a repression of enzymes of glycolysis and butyrate fermentation. Furthermore, a temporary induction in the synthesis of cofactor riboflavin was detected possibly due to an increased demand for flavin mononucleotid (FMN) and flavin adenine dinucleotide (FAD) in redox reactions. However, biosynthesis of the cofactors thiamin pyrophosphate and cobalamin were repressed deducing oxidation-prone enzymes and intermediates in these pathways. Micro-aerobically shocked cells were characterized by an increased demand for cysteine and a thiol redox proteomics approach revealed a dramatic increase in the oxidative state of cysteine in more than 800 peptides after 15 min of micro-aerobic shock. This provides not only a catalogue of oxidation-prone cysteine residues in the C. difficile proteome but also puts the amino acid cysteine into a key position in the oxidative stress response. Our study suggests that tolerance of C. difficile towards O
  • Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota.

    Chalermwatanachai, Thanit; Vilchez-Vargas, Ramiro; Holtappels, Gabriele; Lacoere, Tim; Jáuregui, Ruy; Kerckhof, Frederiek-Maarten; Pieper, Dietmar H; Van de Wiele, Tom; Vaneechoutte, Mario; Van Zele, Thibaut; Bachert, Claus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-21)
    Chronic rhinosinusitis with nasal polyp (CRSwNP) patients are often characterized by asthma comorbidity and a type-2 inflammation of the sinonasal mucosa. The mucosal microbiota has been suggested to be implicated in the persistence of inflammation, but associations have not been well defined. To compare the bacterial communities of healthy subjects with CRSwNP patients, we collected nasal swabs from 17 healthy subjects, 21 CRSwNP patients without asthma (CRSwNP-A), and 20 CRSwNP patients with co-morbid asthma (CRSwNP+A). We analysed the microbiota using high-throughput sequencing of the bacterial 16S rRNA. Bacterial communities were different between the three groups. Haemophilus influenzae was significantly enriched in CRSwNP patients, Propionibacterium acnes in the healthy group; Staphylococcus aureus was abundant in the CRSwNP-A group, even though present in 57% of patients. Escherichia coli was found in high amounts in CRSwNP+A patients. Nasal tissues of CRSwNP+A patients expressed significantly higher concentrations of IgE, SE-IgE, and IL-5 compared to those of CRSwNP-A patients. Co-cultivation demonstrated that P. acnes growth was inhibited by H. influenzae, E. coli and S. aureus. The nasal microbiota of healthy subjects are different from those of CRSwNP-A and CRSwNP+A patients. However, the most abundant species in healthy status could not inhibit those in CRSwNP disease.
  • Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae

    Brinkmann, Henner; Göker, Markus; Koblížek, Michal; Wagner-Döbler, Irene; Petersen, Jörn; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
  • Microbiome Yarns: microbiome of the built environment, paranormal microbiology, and the power of single cell genomics1,2,3,4.

    Timmis, Kenneth; Jebok, Franziska; Rohde, Manfred; Molinari, Gabriella; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-16)
  • Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments.

    Spring, Stefan; Bunk, Boyke; Spröer, Cathrin; Rohde, Manfred; Klenk, Hans-Peter; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-04-26)
    Anaerobic strains affiliated with a novel order-level lineage of the Phycisphaerae class were retrieved from the suboxic zone of a hypersaline cyanobacterial mat and anoxic sediments of solar salterns. Genome sequences of five isolates were obtained and compared with metagenome-assembled genomes representing related uncultured bacteria from various anoxic aquatic environments. Gene content surveys suggest a strictly fermentative saccharolytic metabolism for members of this lineage, which could be confirmed by the phenotypic characterization of isolates. Genetic analyses indicate that the retrieved isolates do not have a canonical origin of DNA replication, but initiate chromosome replication at alternative sites possibly leading to an accelerated evolution. Further potential factors driving evolution and speciation within this clade include genome reduction by metabolic specialization and rearrangements of the genome by mobile genetic elements, which have a high prevalence in strains from hypersaline sediments and mats. Based on genetic and phenotypic data a distinct group of strictly anaerobic heterotrophic planctomycetes within the Phycisphaerae class could be assigned to a novel order that is represented by the proposed genus Sedimentisphaera gen. nov. comprising two novel species, S. salicampi gen. nov., sp. nov. and S. cyanobacteriorum gen. nov., sp. nov. This article is protected by copyright. All rights reserved.

View more