News

group leader: Prof. Pieper

Recent Submissions

  • Variations in Microbial Diversity and Metabolite Profiles of the Tropical Marine Sponge Xestospongia muta with Season and Depth.

    Villegas-Plazas, Marcela; Wos-Oxley, Melissa L; Sanchez, Juan A; Pieper, Dietmar H; Thomas, Olivier P; Junca, Howard; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-11-10)
    Xestospongia muta is among the most emblematic sponge species inhabiting coral reefs of the Caribbean Sea. Besides being the largest sponge species growing in the Caribbean, it is also known to produce secondary metabolites. This study aimed to assess the effect of depth and season on the symbiotic bacterial dynamics and major metabolite profiles of specimens of X. muta thriving in a tropical marine biome (Portobelo Bay, Panamá), which allow us to determine whether variability patterns are similar to those reported for subtropical latitudes. The bacterial assemblages were characterized using Illumina deep-sequencing and metabolomic profiles using UHPLC-DAD-ELSD from five depths (ranging 9-28 m) across two seasons (spring and autumn). Diverse symbiotic communities, representing 24 phyla with a predominance of Proteobacteria and Chloroflexi, were found. Although several thousands of OTUs were determined, most of them belong to the rare biosphere and only 23 to a core community. There was a significant difference between the structure of the microbial communities in respect to season (autumn to spring), with a further significant difference between depths only in autumn. This was partially mirrored in the metabolome profile, where the overall metabolite composition did not differ between seasons, but a significant depth gradient was observed in autumn. At the phyla level, Cyanobacteria, Firmicutes, Actinobacteria, and Spirochaete showed a mild-moderate correlation with the metabolome profile. The metabolomic profiles were mainly characterized by known brominated polyunsaturated fatty acids. This work presents findings about the composition and dynamics of the microbial assemblages of X. muta expanding and confirming current knowledge about its remarkable diversity and geographic variability as observed in this tropical marine biome.
  • Determining lineage-specific bacterial growth curves with a novel approach based on amplicon reads normalization using internal standard (ARNIS).

    Piwosz, Kasia; Shabarova, Tanja; Tomasch, Jürgen; Šimek, Karel; Kopejtka, Karel; Kahl, Silke; Pieper, Dietmar H; Koblížek, Michal; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-11-01)
    The growth rate is a fundamental characteristic of bacterial species, determining its contributions to the microbial community and carbon flow. High-throughput sequencing can reveal bacterial diversity, but its quantitative inaccuracy precludes estimation of abundances and growth rates from the read numbers. Here, we overcame this limitation by normalizing Illumina-derived amplicon reads using an internal standard: a constant amount of Escherichia coli cells added to samples just before biomass collection. This approach made it possible to reconstruct growth curves for 319 individual OTUs during the grazer-removal experiment conducted in a freshwater reservoir Římov. The high resolution data signalize significant functional heterogeneity inside the commonly investigated bacterial groups. For instance, many Actinobacterial phylotypes, a group considered to harbor slow-growing defense specialists, grew rapidly upon grazers' removal, demonstrating their considerable importance in carbon flow through food webs, while most Verrucomicrobial phylotypes were particle associated. Such differences indicate distinct life strategies and roles in food webs of specific bacterial phylotypes and groups. The impact of grazers on the specific growth rate distributions supports the hypothesis that bacterivory reduces competition and allows existence of diverse bacterial communities. It suggests that the community changes were driven mainly by abundant, fast, or moderately growing, and not by rare fast growing, phylotypes. We believe amplicon read normalization using internal standard (ARNIS) can shed new light on in situ growth dynamics of both abundant and rare bacteria.
  • Viable cyanobacteria in the deep continental subsurface.

    Puente-Sánchez, Fernando; Arce-Rodríguez, Alejandro; Oggerin, Monike; García-Villadangos, Miriam; Moreno-Paz, Mercedes; Blanco, Yolanda; Rodríguez, Nuria; Bird, Laurence; Lincoln, Sara A; Tornos, Fernando; Prieto-Ballesteros, Olga; Freeman, Katherine H; Pieper, Dietmar H; Timmis, Kenneth N; Amils, Ricardo; Parro, Víctor; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-10-16)
    Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present molecular, microscopic, and metagenomic evidence that cyanobacteria predominate in deep subsurface rock samples from the Iberian Pyrite Belt Mars analog (southwestern Spain). Metagenomics showed the potential for a hydrogen-based lithoautotrophic cyanobacterial metabolism. Collectively, our results suggest that they may play an important role as primary producers within the deep-Earth biosphere. Our description of this previously unknown ecological niche for cyanobacteria paves the way for models on their origin and evolution, as well as on their potential presence in current or primitive biospheres in other planetary bodies, and on the extant, primitive, and putative extraterrestrial biospheres.
  • Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota.

    Chalermwatanachai, Thanit; Vilchez-Vargas, Ramiro; Holtappels, Gabriele; Lacoere, Tim; Jáuregui, Ruy; Kerckhof, Frederiek-Maarten; Pieper, Dietmar H; Van de Wiele, Tom; Vaneechoutte, Mario; Van Zele, Thibaut; Bachert, Claus; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-05-21)
    Chronic rhinosinusitis with nasal polyp (CRSwNP) patients are often characterized by asthma comorbidity and a type-2 inflammation of the sinonasal mucosa. The mucosal microbiota has been suggested to be implicated in the persistence of inflammation, but associations have not been well defined. To compare the bacterial communities of healthy subjects with CRSwNP patients, we collected nasal swabs from 17 healthy subjects, 21 CRSwNP patients without asthma (CRSwNP-A), and 20 CRSwNP patients with co-morbid asthma (CRSwNP+A). We analysed the microbiota using high-throughput sequencing of the bacterial 16S rRNA. Bacterial communities were different between the three groups. Haemophilus influenzae was significantly enriched in CRSwNP patients, Propionibacterium acnes in the healthy group; Staphylococcus aureus was abundant in the CRSwNP-A group, even though present in 57% of patients. Escherichia coli was found in high amounts in CRSwNP+A patients. Nasal tissues of CRSwNP+A patients expressed significantly higher concentrations of IgE, SE-IgE, and IL-5 compared to those of CRSwNP-A patients. Co-cultivation demonstrated that P. acnes growth was inhibited by H. influenzae, E. coli and S. aureus. The nasal microbiota of healthy subjects are different from those of CRSwNP-A and CRSwNP+A patients. However, the most abundant species in healthy status could not inhibit those in CRSwNP disease.
  • Pathogenic functions of host microbiota.

    Rath, Silke; Rud, Tatjana; Karch, André; Pieper, Dietmar Helmut; Vital, Marius; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-28)
    It is becoming evident that certain features of human microbiota, encoded by distinct autochthonous taxa, promote disease. As a result, borders between the so-called opportunistic pathogens, pathobionts, and commensals are increasingly blurred, and specific targets for manipulating microbiota to improve host health are becoming elusive. In this study, we focus on the functions of host bacterial communities that have the potential to cause disease, proposing the term "pathogenic function (pathofunction)". The concept is presented via three distinct examples, namely, the formation of (i) trimethylamine, (ii) secondary bile acids, and (iii) hydrogen sulfide, which represent metabolites of the gut microbiota linked to the development of non-communicable diseases. Using publicly available metagenomic and metatranscriptomic data (n = 2975), we quantified those pathofunctions in health and disease and exposed the key players. Pathofunctions were ubiquitously present with increased abundances in patient groups. Overall, the three pathofunctions were detected at low mean concentrations (< 1% of total bacteria carried respective genes) and encompassed various taxa, including uncultured members. We outline how this function-centric approach, where all members of a community exhibiting a particular pathofunction are redundant, can contribute to risk assessment and the development of precision treatment directing gut microbiota to increase host health.
  • Metagenomic insights into resistant starch degradation by human gut microbiota.

    Vital, Marius; Howe, Adina; Bergeron, Nathalie; Krauss, Ronald M; Jansson, Janet K; Tiedje, James M; HZI,Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7,38124 Braunschweig, Germany. (2018-09-28)
    Several studies monitoring alterations of the community structure upon resistant starch (RS) interventions are available, although comprehensive function-based analyses are lacking. Recently, a multiomics approach based on 16S rRNA gene-sequencing, metaproteomics and metabolomics on fecal samples from individuals subjected to high and low doses of type-2 RS (RS2; 48 g and 3 g/2500 kcal, respectively, daily for 2 weeks) in a cross-over intervention experiment was performed. In the present study, we did pathway-based metagenomic analyses on samples from a subset of individuals (n=12) from that study to get additional, detailed insights into the functional structure at high resolution during RS2 intervention. A mechanistic framework based on obtained results is proposed where primary degradation was governed by Firmicutes, with Ruminococcus bromii as a major taxon involved, providing fermentation substrates and increased acetate concentrations for growth of various major butyrate-producers exhibiting the enzyme butyryl-CoA:acetate CoA-transferase. H2-scavenging sulfite reducers and acetogens concurrently increased. Individual responses of gut microbiota were noted where seven of the 12 participants displayed all features of the outlined pattern, whereas four individuals showed mixed behavior and one subject was unresponsive. Intervention order did not affect the outcome emphasizing a constant substrate supply for maintaining specific functional communities.
  • The Role of Pulmonary and Systemic Immunosenescence in Acute Lung Injury.

    Brandenberger, Christina; Kling, Katharina Maria; Vital, Marius; Christian, Mühlfeld; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-08-01)
    Acute lung injury (ALI) is associated with increased morbidity and mortality in the elderly (> 65 years), but the knowledge about origin and effects of immunosenescence in ALI is limited. Here, we investigated the immune response at pulmonary, systemic and cellular level in young (2-3 months) and old (18-19 months) C57BL/6J mice to localize and characterize effects of immunosenescence in ALI. ALI was induced by intranasal lipopolysaccharide (LPS) application and the animals were sacrificed 24 or 72 h later. Pulmonary inflammation was investigated by analyzing histopathology, bronchoalveolar lavage fluid (BALF) cytometry and cytokine expression. Systemic serum cytokine expression, spleen lymphocyte populations and the gut microbiome were analyzed, as well as activation of alveolar and bone marrow derived macrophages (BMDM)
  • Chronic rhinosinusitis with nasal polyps is characterized by dysbacteriosis of the nasal microbiota.

    Chalermwatanachai, Thanit; Vilchez-Vargas, Ramiro; Holtappels, Gabriele; Lacoere, Tim; Jáuregui, Ruy; Kerckhof, Frederiek-Maarten; Pieper, Dietmar H; Van de Wiele, Tom; Vaneechoutte, Mario; Van Zele, Thibaut; Bachert, Claus; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-05-21)
    Chronic rhinosinusitis with nasal polyp (CRSwNP) patients are often characterized by asthma comorbidity and a type-2 inflammation of the sinonasal mucosa. The mucosal microbiota has been suggested to be implicated in the persistence of inflammation, but associations have not been well defined. To compare the bacterial communities of healthy subjects with CRSwNP patients, we collected nasal swabs from 17 healthy subjects, 21 CRSwNP patients without asthma (CRSwNP-A), and 20 CRSwNP patients with co-morbid asthma (CRSwNP+A). We analysed the microbiota using high-throughput sequencing of the bacterial 16S rRNA. Bacterial communities were different between the three groups. Haemophilus influenzae was significantly enriched in CRSwNP patients, Propionibacterium acnes in the healthy group; Staphylococcus aureus was abundant in the CRSwNP-A group, even though present in 57% of patients. Escherichia coli was found in high amounts in CRSwNP+A patients. Nasal tissues of CRSwNP+A patients expressed significantly higher concentrations of IgE, SE-IgE, and IL-5 compared to those of CRSwNP-A patients. Co-cultivation demonstrated that P. acnes growth was inhibited by H. influenzae, E. coli and S. aureus. The nasal microbiota of healthy subjects are different from those of CRSwNP-A and CRSwNP+A patients. However, the most abundant species in healthy status could not inhibit those in CRSwNP disease.
  • Detection of Streptococcus pyogenes virulence genes in Streptococcus dysgalactiae subsp. equisimilis from Vellore, India.

    Babbar, Anshu; Itzek, Andreas; Pieper, Dietmar H; Nitsche-Schmitz, D Patric; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03-12)
    Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.
  • Insights into Broilers' Gut Microbiota Fed with Phosphorus, Calcium, and Phytase Supplemented Diets.

    Borda-Molina, Daniel; Vital, Marius; Sommerfeld, Vera; Rodehutscord, Markus; Camarinha-Silva, Amélia; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
    Phytase supplementation in broiler diets is a common practice to improve phosphorus (P) availability and to reduce P loss by excretion. An enhanced P availability, and its concomitant supplementation with calcium (Ca), can affect the structure of the microbial community in the digestive tract of broiler chickens. Here, we aim to distinguish the effects of mineral P, Ca, and phytase on the composition of microbial communities present in the content and the mucosa layer of the gastrointestinal tract (GIT) of broiler chickens. Significant differences were observed between digesta and mucosa samples for the GIT sections studied (p= 0.001). The analyses of 56 individual birds showed a high microbial composition variability within the replicates of the same diet. The average similarity within replicates of digesta and mucosa samples across all diets ranged from 29 to 82% in crop, 19-49% in ileum, and 17-39% in caeca. Broilers fed with a diet only supplemented with Ca had the lowest body weight gain and feed conversion values while diets supplemented with P showed the best performance results. An effect of each diet on crop mucosa samples was observed, however, similar results were not obtained from digesta samples. Microbial communities colonizing the ileum mucosa samples were affected by P supplementation. Caeca-derived samples showed the highest microbial diversity when compared to the other GIT sections and the most prominent phylotypes were related to genusFaecalibacteriumandPseudoflavonifractor, known for their influence on gut health and as butyrate producers. Lower microbial diversity in crop digesta was linked to lower growth performance of birds fed with a diet only supplemented with Ca. Each diet affected microbial communities within individual sections, however, no diet showed a comprehensive effect across all GIT sections, which can primarily be attributed to the great variability among replicates. The substantial community differences between digesta and mucosa derived samples indicate that both habitats have to be considered when the influence of diet on the gut microbiota, broiler growth performance, and animal health is investigated.
  • Members of a new subgroup of Streptococcus anginosus harbor virulence related genes previously observed in Streptococcus pyogenes.

    Babbar, Anshu; Kumar, Venkatesan Naveen; Bergmann, René; Barrantes, Israel; Pieper, Dietmar H; Itzek, Andreas; Nitsche-Schmitz, D Patric; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-04)
    Conventionally categorized as commensals, the Streptococci of the species S. anginosus are facultative human pathogens that are difficult to diagnose and often overlooked. Furthermore, detailed investigation and diagnosis of S. anginosus infections is hampered by unexplored taxonomy and widely elusive molecular pathogenesis. To explore their pathogenic potential, S. anginosus isolates collected from patients of two geographical locations (Vellore, India and Leipzig, Germany) were subjected to multi-locus sequence analysis (MLSA). This analysis revealed the potential presence of a new distinct clade of the species S. anginosus, tentatively termed here as genomosubspecies vellorensis. A complementary PCR-based screening for S. pyogenes virulence factor as well as antibiotic resistance genes revealed not only the presence of superantigen- and extracellular DNase coding genes identical to corresponding genes of S. pyogenes, but also of erythromycin and tetracycline resistance genes in the genomes of the analyzed S. anginosus isolates, thus posing a matter of significant health concern. Identification of new pathogenic S. anginosus strains capable of causing difficult to treat infections may pose additional challenges to the diagnosis and treatment of Streptococcus based infections.
  • Initial evenness determines diversity and cell density dynamics in synthetic microbial ecosystems.

    Ehsani, Elham; Hernandez-Sanabria, Emma; Kerckhof, Frederiek-Maarten; Props, Ruben; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar Helmut; Boon, Nico; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-10)
    The effect of initial evenness on the temporal trajectory of synthetic communities in comprehensive, low-volume microcosm studies remains unknown. We used flow cytometric fingerprinting and 16S rRNA gene amplicon sequencing to assess the impact of time on community structure in one hundred synthetic ecosystems of fixed richness but varying initial evenness. Both methodologies uncovered a similar reduction in diversity within synthetic communities of medium and high initial evenness classes. However, the results of amplicon sequencing showed that there were no significant differences between and within the communities in all evenness groups at the end of the experiment. Nevertheless, initial evenness significantly impacted the cell density of the community after five medium transfers. Highly even communities retained the highest cell densities at the end of the experiment. The relative abundances of individual species could be associated to particular evenness groups, suggesting that their presence was dependent on the initial evenness of the synthetic community. Our results reveal that using synthetic communities for testing ecological hypotheses requires prior assessment of initial evenness, as it impacts temporal dynamics.
  • The Inner Workings of the Outer Surface: Skin and Gill Microbiota as Indicators of Changing Gut Health in Yellowtail Kingfish.

    Legrand, Thibault P R A; Catalano, Sarah R; Wos-Oxley, Melissa L; Stephens, Fran; Landos, Matt; Bansemer, Matthew S; Stone, David A J; Qin, Jian G; Oxley, Andrew P A; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
    The mucosal surfaces and associated microbiota of fish are an important primary barrier and provide the first line of defense against potential pathogens. An understanding of the skin and gill microbial assemblages and the factors which drive their composition may provide useful insights into the broad dynamics of fish host-microbial relationships, and may reveal underlying changes in health status. This is particularly pertinent to cultivated systems whereby various stressors may led to conditions (like enteritis) which impinge on productivity. As an economically important species, we assessed whether the outer-surface bacterial communities reflect a change in gut health status of cultivated Yellowtail Kingfish (Seriola lalandi). Active bacterial assemblages were surveyed from RNA extracts from swabs of the skin and gills by constructing Illumina 16S rRNA gene amplicon libraries. Proteobacteria and Bacteroidetes were predominant in both the skin and gills, with enrichment of key β-proteobacteria in the gills (Nitrosomonadales and Ferrovales). Fish exhibiting early stage chronic lymphocytic enteritis comprised markedly different global bacterial assemblages compared to those deemed healthy and exhibiting late stages of the disease. This corresponded to an overall loss of diversity and enrichment of Proteobacteria and Actinobacteria, particularly in the gills. In contrast, bacterial assemblages of fish with late stage enteritis were generally similar to those of healthy individuals, though with some distinct taxa. In conclusion, gut health status is an important factor which defines the skin and gill bacterial assemblages of fish and likely reflects changes in immune states and barrier systems during the early onset of conditions like enteritis. This study represents the first to investigate the microbiota of the outer mucosal surfaces of fish in response to underlying chronic gut enteritis, revealing potential biomarkers for assessing fish health in commercial aquaculture systems.
  • Colonic Butyrate-Producing Communities in Humans: an Overview Using Omics Data.

    Vital, Marius; Karch, André; Pieper, Dietmar H.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2018-01-18)
    Given the key role of butyrate for host health, understanding the ecology of intestinal butyrate-producing communities is a top priority for gut microbiota research. To this end, we performed a pooled analysis on 2,387 metagenomic/transcriptomic samples from 15 publicly available data sets that originated from three continents and encompassed eight diseases as well as specific interventions. For analyses, a gene catalogue was constructed from gene-targeted assemblies of all genes from butyrate synthesis pathways of all samples and from an updated reference database derived from genome screenings. We demonstrate that butyrate producers establish themselves within the first year of life and display high abundances (>20% of total bacterial community) in adults regardless of origin. Various bacteria form this functional group, exhibiting a biochemical diversity including different pathways and terminal enzymes, where one carbohydrate-fueled pathway was dominant with butyryl coenzyme A (CoA):acetate CoA transferase as the main terminal enzyme. Subjects displayed a high richness of butyrate producers, and 17 taxa, primarily members of the Lachnospiraceae and Ruminococcaceae along with some Bacteroidetes, were detected in >70% of individuals, encompassing ~85% of the total butyrate-producing potential. Most of these key taxa were also found to express genes for butyrate formation, indicating that butyrate producers occupy various niches in the gut ecosystem, concurrently synthesizing that compound. Furthermore, results from longitudinal analyses propose that diversity supports functional stability during ordinary life disturbances and during interventions such as antibiotic treatment. A reduction of the butyrate-producing potential along with community alterations was detected in various diseases, where patients suffering from cardiometabolic disorders were particularly affected. IMPORTANCE Studies focusing on taxonomic compositions of the gut microbiota are plentiful, whereas its functional capabilities are still poorly understood. Specific key functions deserve detailed investigations, as they regulate microbiota-host interactions and promote host health and disease. The production of butyrate is among the top targets since depletion of this microbe-derived metabolite is linked to several emerging noncommunicable diseases and was shown to facilitate establishment of enteric pathogens by disrupting colonization resistance. In this study, we established a workflow to investigate in detail the composition of the polyphyletic butyrate-producing community from omics data extracting its biochemical and taxonomic diversity. By combining information from various publicly available data sets, we identified universal ecological key features of this functional group and shed light on its role in health and disease. Our results will assist the development of precision medicine to combat functional dysbiosis.
  • In vitro colonisation of the distal colon by Akkermansia muciniphila is largely mucin and pH dependent.

    Van Herreweghen, F; Van den Abbeele, P; De Mulder, T; De Weirdt, R; Geirnaert, A; Hernandez-Sanabria, E; Vilchez-Vargas, R; Jauregui, R; Pieper, D H; Belzer, C; De Vos, W M; Van de Wiele, T; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-02-07)
    Host mucin is the main constituent of the mucus layer that covers the gut epithelium of the host, and an important source of glycans for the bacteria colonising the intestine. Akkermansia muciniphila is a mucin-degrading bacterium, abundant in the human gut, that is able to produce acetate and propionate during this degradation process. A. muciniphila has been correlated with human health in previous studies, but a mechanistic explanation is lacking. In this study, the main site of colonisation was characterised alongside additional conditions, such as differences in colon pH, prebiotic supplementation and variable mucin supply. To overcome the limitations of in vivo studies concerning variations in mucin availability and difficult access to proximal regions of the colon, a dynamic in vitro gut model (SHIME) was used. In this model, A. muciniphila was found to colonise the distal colon compartment more abundantly than the proximal colon ((±8 log copies/ml compared to ±4 log copies/ml) and the preference for the distal compartment was found to be pH-dependent. The addition of mucin caused a specific increase of A. muciniphila (±4.5 log increase over two days), far exceeding the response of other bacteria present, together with an increase in propionate. These findings suggest that colonisation and mucin degradation by A. muciniphila is dependent on pH and the concentration of mucin. Our results revealed the preference of A. muciniphila for the distal colon environment due to its higher pH and uncovered the quick and stable response of A. muciniphila to mucin supplementation.
  • High-fiber and high-protein diets shape different gut microbial communities, which ecologically behave similarly under stress conditions, as shown in a gastrointestinal simulator.

    Marzorati, Massimo; Vilchez-Vargas, Ramiro; Bussche, Julie Vanden; Truchado, Pilar; Jauregui, Ruy; El Hage, Racha Ahmad; Pieper, Dietmar H; Vanhaecke, Lynn; Van de Wiele, Tom; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01)
    The aim of this work was to investigate the relationship between the structure of gut microbial communities fed with different diets (i.e. high-protein-HP- versus high-fiber-HF-diet) and their functional stability when challenged with mild and acute doses of a mix of amoxicillin, ciprofloxacin, and tetracycline. We made use of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®)-a continuous model of the gastrointestinal tract-coupled with 16S-targeted Illumina and metabolomics (i.e. UHPLC-HRMS) analyses. Independently of the diet, the sudden exposure to an acute stress led to a modification of the microbial community structure, selecting for species belonging to Bacillus spp.; Clostridium cluster XIVa; Enterococci; Bacteroides; and Enterobacteriaceae. The antibiotic treatment led to a decrease in the number of operational taxonomic units (at least -10%). Cluster analysis of untargeted metabolic data showed that the antibiotic treatment affected the microbial activity. The impact on metabolites production was lower when the community was preexposed to mild doses of the antibiotic mix. This effect was stronger in the proximal colon for the HF diet and in the distal colon for the HP diet. Different diets shaped different gut microbial communities, which ecologically behaved similarly under stress conditions.
  • Treatment of biofilms in bacterial vaginosis by an amphoteric tenside pessary-clinical study and microbiota analysis.

    Gottschick, Cornelia; Deng, Zhi-Luo; Vital, Marius; Masur, Clarissa; Abels, Christoph; Pieper, Dietmar H; Rohde, Manfred; Mendling, Werner; Wagner-Döbler, Irene; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-09-13)
    Bacterial vaginosis (BV) is the most common vaginal syndrome among women in their reproductive years. It is associated with an increased risk of acquiring sexually transmitted infections and complications like preterm labor. BV is characterized by a high recurrence rate for which biofilms frequently found on vaginal epithelial cells may be a reason.
  • Functional soil metagenomics: elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation.

    Duarte, Márcia; Nielsen, Agnes; Camarinha-Silva, Amélia; Vilchez-Vargas, Ramiro; Bruls, Thomas; Wos-Oxley, Melissa L; Jauregui, Ruy; Pieper, Dietmar H.; Helmholtz Centre for infection research GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-08)
    A culture-independent function-based screening approach was used to assess the microbial aerobic catabolome for polycyclic aromatic hydrocarbons degradation of a soil subjected to 12 years of in situ bioremediation. A total of 422 750 fosmid clones were screened for key aromatic ring-cleavage activities using 2,3-dihydroxybiphenyl as substrate. Most of the genes encoding ring-cleavage enzymes on the 768 retrieved positive fosmids could not be identified using primer-based approaches and, thus, 205 fosmid inserts were sequenced. Nearly two hundred extradiol dioxygenase encoding genes of three different superfamilies could be identified. Additional key genes of aromatic metabolic pathways were identified, including a high abundance of Rieske non-heme iron oxygenases that provided detailed information on enzymes activating aromatic compounds and enzymes involved in activation of the side chain of methylsubstituted aromatics. The gained insights indicated a complex microbial network acting at the site under study, which comprises organisms similar to recently identified Immundisolibacter cernigliae TR3.2 and Rugosibacter aromaticivorans Ca6 and underlined the great potential of an approach that combines an activity-screening, a cost-effective high-throughput sequencing of fosmid clones and a phylogenomic-routed and manually curated database to carefully identify key proteins dedicated to aerobic degradation of aromatic compounds.
  • Uncovering the trimethylamine-producing bacteria of the human gut microbiota.

    Rath, Silke; Heidrich, Benjamin; Pieper, Dietmar H; Vital, Marius; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-05-15)
    Trimethylamine (TMA), produced by the gut microbiota from dietary quaternary amines (mainly choline and carnitine), is associated with atherosclerosis and severe cardiovascular disease. Currently, little information on the composition of TMA producers in the gut is available due to their low abundance and the requirement of specific functional-based detection methods as many taxa show disparate abilities to produce that compound.
  • [Intestinal microbiota in individualized therapies].

    Witte, T; Pieper, D H; Heidrich, B; Helmholtz Centre for infection research, Inhoffenstr. 7., 38124 Braunschweig, Germany. (2017-05-24)
    During recent years, the analysis of the human microbiota has been receiving more and more scientific focus. Deep sequencing analysis enables characterization of microbial communities in different environments without the need of culture-based methods. Hereby, information about microbial communities is increasing enormously. Numerous studies in humans and animal models revealed the important role of the microbiome in emergence and natural course of diseases such as autoimmune diseases and metabolic disorders, e. g., the metabolic syndrome. The identification of causalities between the intestinal microbiota composition and function, and diseases in humans and animal models can help to develop individualized therapies targeting the microbiome and its modification. Nowadays, it is established that several factors influence the composition of the microbiota. Diet it is one of the major factors shaping the microbiota and the use of pro- and prebiotica may induce changes in the microbial community. Fecal microbiome transfer is the first approach targeting the intestinal microbiota which is implemented in the clinical routine for patients with therapy-refractory infections with Clostridium difficile. Herewith, the recipient's microbiota can be changed permanently and the patient can be cured from the infection.

View more