• A brewing understanding of the regulation of Bax function by Bcl-xL and Bcl-2.

      Renault, Thibaud T; Dejean, Laurent M; Manon, Stéphen; Helmholtz-Zentrum für Infektionsforschung GmbH. Inhoffenstr.7, 38124 Braunschweig, Germany. (2017-01)
      Bcl-2 family members form a network of protein-protein interactions that regulate apoptosis through permeabilization of the mitochondrial outer membrane. Deciphering this intricate network requires streamlined experimental models, including the heterologous expression in yeast. This approach had previously enabled researchers to identify domains and residues that underlie the conformational changes driving the translocation, the insertion and the oligomerization of the pro-apoptotic protein Bax at the level of the mitochondrial outer membrane. Recent studies that combine experiments in yeast and in mammalian cells have shown the unexpected effect of the anti-apoptotic protein Bcl-xL on the priming of Bax. As demonstrated with the BH3-mimetic molecule ABT-737, this property of Bcl-xL, and of Bcl-2, is crucial to elaborate about how apoptosis could be reactivated in tumoral cells.
    • Optimizing Salmonella enterica serovar Typhimurium for bacteria-mediated tumor therapy.

      Felgner, Sebastian; Kocijancic, Dino; Frahm, Michael; Curtiss, Roy; Erhardt, Marc; Weiss, Siegfried; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Bacteria-mediated tumor therapy using Salmonella enterica serovar Typhimurium is a therapeutic option with great potential. Numerous studies explored the potential of Salmonella Typhimurium for therapeutic applications, however reconciling safety with vectorial efficacy remains a major issue. Recently we have described a conditionally attenuated Salmonella vector that is based on genetic lipopolysaccharide modification. This vector combines strong attenuation with appropriate anti-tumor properties by targeting various cancerous tissues in vivo. Therefore, it was promoted as an anti-tumor agent. In this addendum, we summarize these findings and demonstrate additional optimization steps that may further improve the therapeutic efficacy of our vector strain.