Recent Submissions

  • Virtual Screening Against Carbohydrate-Binding Proteins: Evaluation and Application to Bacterial Burkholderia ambifaria Lectin.

    Dingjan, Tamir; Gillon, Émilie; Imberty, Anne; Pérez, Serge; Titz, Alexander; Ramsland, Paul A; Yuriev, Elizabeth; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2018-09-24)
    Bacterial adhesion to human epithelia via lectins constitutes a therapeutic opportunity to prevent infection. Specifically, BambL (the lectin from Burkholderia ambifaria) is implicated in cystic fibrosis, where lectin-mediated bacterial adhesion to fucosylated lung epithelia is suspected to play an important role. We employed structure-based virtual screening to identify inhibitors of BambL-saccharide interaction with potential therapeutic value. To enable such discovery, a virtual screening protocol was iteratively developed via 194 retrospective screening protocols against 4 bacterial lectins (BambL, BC2L-A, FimH, and LecA) with known ligands. Specific attention was given to the rigorous evaluation of retrospective screening, including calculation of analytical errors for enrichment metrics. The developed virtual screening workflow used crystallographic constraints, pharmacophore filters, and a final manual selection step. The protocol was applied to BambL, predicting 15 active compounds from virtual libraries of approximately 7 million compounds. Experimental validation using fluorescence polarization confirmed micromolar inhibitory activity for two compounds, which were further characterized by isothermal titration calorimetry and surface plasmon resonance. Subsequent testing against LecB from Pseudomonas aeruginosa demonstrated binding specificity of one of the hit compounds. This report demonstrates the utility of virtual screening protocols, integrating ligand-based pharmacophore filtering and structure-based constraints, in the search for bacterial lectin inhibitors.
  • Lectin antagonists in infection, immunity, and inflammation.

    Meiers, Joscha; Siebs, Eike; Zahorska, Eva; Titz, Alexander; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-08-27)
    Lectins are proteins found in all domains of life with a plethora of biological functions, especially in the infection process, immune response, and inflammation. Targeting these carbohydrate-binding proteins is challenged by the fact that usually low affinity interactions between lectin and glycoconjugate are observed. Nature often circumvents this process through multivalent display of ligand and lectin. Consequently, the vast majority of synthetic antagonists are multivalently displayed native carbohydrates. At the cost of disadvantageous pharmacokinetic properties and possibly a reduced selectivity for the target lectin, the molecules usually possess very high affinities to the respective lectin through ligand epitope avidity. Recent developments include the advent of glycomimetic or allosteric small molecule inhibitors for this important protein class and their use in chemical biology and drug research. This evolution has culminated in the transition of the small molecule GMI-1070 into clinical phase III. In this opinion article, an overview of the most important developments of lectin antagonists in the last two decades with a focus on the last five years is given
  • Inverting Small Molecule-Protein Recognition by the Fluorine Gauche Effect: Selectivity Regulated by Multiple H→F Bioisosterism.

    Bentler, Patrick; Bergander, Klaus; Daniliuc, Constantin G; Mück-Lichtenfeld, Christian; Jumde, Ravindra P; Hirsch, Anna K H; Gilmour, Ryan; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany (Wiley-VCH, 2019-08-05)
    Fluorinated motifs have a venerable history in drug discovery, but as C(sp3 )-F-rich 3D scaffolds appear with increasing frequency, the effect of multiple bioisosteric changes on molecular recognition requires elucidation. Herein we demonstrate that installation of a 1,3,5-stereotriad, in the substrate for a commonly used lipase from Pseudomonas fluorescens does not inhibit recognition, but inverts stereoselectivity. This provides facile access to optically active, stereochemically well-defined organofluorine compounds (up to 98 % ee). Whilst orthogonal recognition is observed with fluorine, the trend does not hold for the corresponding chlorinated substrates or mixed halogens. This phenomenon can be placed on a structural basis by considering the stereoelectronic gauche effect inherent to F-C-C-X systems (σ→σ*). Docking reveals that this change in selectivity (H versus F) with a common lipase results from inversion in the orientation of the bound substrate being processed as a consequence of conformation. This contrasts with the stereochemical interpretation of the biogenetic isoprene rule, whereby product divergence from a common starting material is also a consequence of conformation, albeit enforced by two discrete enzymes.
  • Rational Adaptation of L3MBTL1 Inhibitors to Create Small-Molecule Cbx7 Antagonists.

    Simhadri, Chakravarthi; Daze, Kevin D; Douglas, Sarah F; Milosevich, Natalia; Monjas, Leticia; Dev, Amarjot; Brown, Tyler M; Hirsch, Anna K H; Wulff, Jeremy E; Hof, Fraser; et al. (Wiley, 2019-08-06)
    Chromobox homolog 7 (Cbx7) is an epigenetic modulator that is an important driver of multiple cancers. It is a methyl reader protein that operates by recognizing and binding to methylated lysine residues on specific partners. Herein we report our efforts to create low-molecular-weight inhibitors of Cbx7 by making rational structural adaptations to inhibitors of a different methyl reader protein, L3MBTL1, inhibitors that had previously been reported to be inactive against Cbx7. We evaluated each new inhibitor for Cbx7 inhibition by fluorescence polarization assay, and also confirmed the binding of selected inhibitors to Cbx7 by saturation-transfer difference NMR spectroscopy. This work identified multiple small-molecule inhibitors with modest (IC50 : 257-500 μm) potency.
  • Absorption of Anthocyanin Rutinosides after Consumption of a Blackcurrant ( Ribes nigrum L.) Extract.

    Röhrig, Teresa; Kirsch, Verena; Schipp, Dorothea; Galan, Jens; Richling, Elke; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2019-06-19)
    The dominant anthocyanins in blackcurrant are delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside. Data on their absorption and distribution in the human body are limited. Therefore, we performed a human pilot study on five healthy male volunteers consuming a blackcurrant (Ribes nigrum L.) extract. The rutinosides and their degradation products gallic acid and protocatechuic acid were determined in plasma and urine. The rutinosides’ concentrations peaked in both plasma and urine samples within 2 h of extract ingestion. The recoveries of delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside from urine samples were 0.040 ± 0.011% and 0.048 ± 0.016%, respectively, over a 48 h period. Protocatechuic acid concentration increased significantly after ingestion of the blackcurrant extract. Our results show that after ingestion of a blackcurrant extract containing delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside, significant quantities of biologically active compounds circulated in the plasma and were excreted via urine. Furthermore, these results contribute to the understanding of anthocyanin metabolism in humans.
  • Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study.

    Lepsik, Martin; Sommer, Roman; Kuhaudomlarp, Sakonwan; Lelimousin, Mickaël; Paci, Emanuele; Varrot, Annabelle; Titz, Alexander; Imberty, Anne; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Elsevier, 2019-09-01)
    Pathogenic micro-organisms utilize protein receptors (lectins) in adhesion to host tissues, a process that in some cases relies on the interaction between lectins and human glycoconjugates. Oligosaccharide epitopes are recognized through their three-dimensional structure and their flexibility is a key issue in specificity. In this paper, we analysed by X-ray crystallography the structures of the LecB lectin from two strains of Pseudomonas aeruginosa in complex with Lewis x oligosaccharide present on cell surfaces of human tissues. An unusual conformation of the glycan was observed in all binding sites with a non-canonical syn orientation of the N-acetyl group of N-acetyl-glucosamine. A PDB-wide search revealed that such an orientation occurs only in 4% of protein/carbohydrate complexes. Theoretical chemistry calculations showed that the observed conformation is unstable in solution but stabilised by the lectin. A reliable description of LecB/Lewis x complex by force field-based methods had proven especially challenging due to the special feature of the binding site, two closely apposed Ca2+ ions which induce strong charge delocalisation. By comparing various force-field parametrisations, we propose a general strategy which will be useful in near future for designing carbohydrate-based ligands (glycodrugs) against other calcium-dependent protein receptors.
  • Fragment-Based Discovery of a Qualified Hit Targeting the Latency-Associated Nuclear Antigen of the Oncogenic Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8.

    Kirsch, Philine; Jakob, Valentin; Oberhausen, Kevin; Stein, Saskia C; Cucarro, Ivano; Schulz, Thomas F; Empting, Martin; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (American Chemical Society, 2019-04-25)
    The latency-associated nuclear antigen (LANA) is required for latent replication and persistence of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8. It acts via replicating and tethering the virus episome to the host chromatin and exerts other functions. We conceived a new approach for the discovery of antiviral drugs to inhibit the interaction between LANA and the viral genome. We applied a biophysical screening cascade and identified the first LANA binders from small, structurally diverse compound libraries. Starting from a fragment-sized scaffold, we generated optimized hits via fragment growing using a dedicated fluorescence-polarization-based assay as the structure-activity-relationship driver. We improved compound potency to the double-digit micromolar range. Importantly, we qualified the resulting hit through orthogonal methods employing EMSA, STD-NMR, and MST methodologies. This optimized hit provides an ideal starting point for subsequent hit-to-lead campaigns providing evident target-binding, suitable ligand efficiencies, and favorable physicochemical properties.
  • Protein-Templated Dynamic Combinatorial Chemistry: Brief Overview and Experimental Protocol

    Hartman, Alwin M.; Gierse, Robin M.; Hirsch, Anna K. H.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley, 2019-05-03)
    Dynamic combinatorial chemistry (DCC) is a powerful tool to identify bioactive compounds. This efficient technique allows the target to select its own binders and circumvents the need for synthesis and biochemical evaluation of all individual derivatives. An ever‐increasing number of publications report the use of DCC on biologically relevant target proteins. This minireview complements previous reviews by focusing on the experimental protocol and giving detailed examples of essential steps and factors that need to be considered, such as protein stability, buffer composition and cosolvents.
  • Replacement of an Indole Scaffold Targeting Human 15-Lipoxygenase-1 Using Combinatorial Chemistry.

    Prismawan, Deka; van der Vlag, Ramon; Guo, Hao; Dekker, Frank J; Hirsch, Anna K H; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-Blackwell, 2019-05-01)
    Human 15-lipoxygenase-1 (15-LOX-1) belongs to the class of lipoxygenases, which catalyze oxygenation of polyunsaturated fatty acids, such as arachidonic and linoleic acid. Recent studies have shown that 15-LOX-1 plays an important role in physiological processes linked to several diseases such as airway inflammation disease, coronary artery disease, and several types of cancer such as rectal, colon, breast and prostate cancer. In this study, we aimed to extend the structural diversity of 15-LOX-1 inhibitors, starting from the recently identified indolyl core. In order to find new scaffolds, we employed a combinatorial approach using various aromatic aldehydes and an aliphatic hydrazide tail. This scaffold-hopping study resulted in the identification of the 3-pyridylring as a suitable replacement of the indolyl core with an inhibitory activity in the micromolar range (IC50=16±6 μm) and a rapid and efficient structure-activity relationship investigation.
  • Low-Dimensional Metal-Organic Coordination Structures on Graphene.

    Li, Jun; Solianyk, Leonid; Schmidt, Nico; Baker, Brian; Gottardi, Stefano; Moreno Lopez, Juan Carlos; Enache, Mihaela; Monjas, Leticia; van der Vlag, Ramon; Havenith, Remco W A; et al. (American Society of Chemistry, 2019-05-23)
    We report the formation of one- and two-dimensional metal-organic coordination structures from para-hexaphenyl-dicarbonitrile (NC-Ph6-CN) molecules and Cu atoms on graphene epitaxially grown on Ir(111). By varying the stoichiometry between the NC-Ph6-CN molecules and Cu atoms, the dimensionality of the metal-organic coordination structures could be tuned: for a 3:2 ratio, a two-dimensional hexagonal porous network based on threefold Cu coordination was observed, while for a 1:1 ratio, one-dimensional chains based on twofold Cu coordination were formed. The formation of metal-ligand bonds was supported by imaging the Cu atoms within the metal-organic coordination structures with scanning tunneling microscopy. Scanning tunneling spectroscopy measurements demonstrated that the electronic properties of NC-Ph6-CN molecules and Cu atoms were different between the two-dimensional porous network and one-dimensional molecular chains.
  • Comparing the Self-Assembly of Sexiphenyl-Dicarbonitrile on Graphite and Graphene on Cu(111).

    Schmidt, Nico; Li, Jun; Gottardi, Stefano; Moreno-Lopez, Juan Carlos; Enache, Mihaela; Monjas, Leticia; van der Vlag, Ramon; Havenith, Remco W A; Hirsch, Anna K H; Stöhr, Meike; et al. (Wiley-Blackwell, 2019-04-01)
    A comparative study on the self-assembly of sexiphenyl-dicarbonitrile on highly oriented pyrolytic graphite and single-layer graphene on Cu(111) is presented. Despite an overall low molecule-substrate interaction, the close-packed structures exhibit a peculiar shift repeating every four to five molecules. This shift has hitherto not been reported for similar systems and is hence a unique feature induced by the graphitic substrates.
  • 2-Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action.

    Bestgen, Benoît; Kufareva, Irina; Seetoh, Weiguang; Abell, Chris; Hartmann, Rolf W; Abagyan, Ruben; Le Borgne, Marc; Filhol, Odile; Cochet, Claude; Lomberget, Thierry; et al. (American Chemical Society, 2019-02-28)
    Protein CK2 has gained much interest as an anticancer drug target in the past decade. We had previously described the identification of a new allosteric site on the catalytic α-subunit, along with first small molecule ligands based on the 4-(4-phenylthiazol-2-ylamino)benzoic acid scaffold. In the present work, structure optimizations guided by a binding model led to the identification of the lead compound 2-hydroxy-4-((4-(naphthalen-2-yl)thiazol-2-yl)amino)benzoic acid (27), showing a submicromolar potency against purified CK2α (IC
  • Energy‐Coupling Factor Transporters as Novel Antimicrobial Targets

    Bousis, Spyridon; Diamanti, Eleonora; Slotboom, Dirk J.; Hirsch, Anna K. H.; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Wiley-Blackwell, 2019-02)
    In an attempt to find new antibiotics, novel ways of interfering with important biological functions should be explored, especially with those which are necessary or even irreplaceable for bacterial survival, growth, and virulence. The purpose of this review is to highlight B‐type vitamin transporters from the energy‐coupling factor (ECF) family, which are not present in humans, as potential antimicrobial targets. In addition, a druggability analysis of an ECF transporter for folic acid and sequence‐conservation studies in seven prominent pathogens revealed new druggable pockets. Evaluation of the presence of de novo biosynthetic routes for the vitamins in question in the seven pathogens confirmed that this target class holds promise for the discovery of antimicrobial drugs with a new mechanism of action, possibly on a broad‐spectrum level.
  • Aspherical and Spherical InvA497-Functionalized Nanocarriers for Intracellular Delivery of Anti-Infective Agents.

    Castoldi, Arianna; Empting, Martin; De Rossi, Chiara; Mayr, Karsten; Dersch, Petra; Hartmann, Rolf; Müller, Rolf; Gordon, Sarah; Lehr, Claus-Michael; HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (Springer, 2018-12-05)
    The objective of this work was to evaluate the potential of polymeric spherical and aspherical invasive nanocarriers, loaded with antibiotic, to access and treat intracellular bacterial infections. Aspherical nanocarriers were prepared by stretching of spherical precursors, and both aspherical and spherical nanocarriers were surface-functionalized with the invasive protein InvA497. The relative uptake of nanocarriers into HEp-2 epithelial cells was then assessed. Nanocarriers were subsequently loaded with a preparation of the non-permeable antibiotic gentamicin, and tested for their ability to treat HEp-2 cells infected with the enteroinvasive bacterium Shigella flexneri. InvA497-functionalized nanocarriers of both spherical and aspherical shape showed a significantly improved rate and extent of uptake into HEp-2 cells in comparison to non-functionalized nanocarriers. Functionalized and antibiotic-loaded nanocarriers demonstrated a dose dependent killing of intracellular S. flexneri. A slight but significant enhancement of intracellular bacterial killing was also observed with aspherical as compared to spherical functionalized nanocarriers at the highest tested concentration. InvA497-functionalized, polymer-based nanocarriers were able to efficiently deliver a non-permeable antibiotic across host cell membranes to affect killing of intracellular bacteria. Functionalized nanocarriers with an aspherical shape showed an interesting future potential for intracellular infection therapy.
  • Inhibitors of 17β-hydroxysteroid dehydrogenase type 1, 2 and 14: Structures, biological activities and future challenges.

    Salah, Mohamed; Abdelsamie, Ahmed S; Frotscher, Martin; HIPS, Helmholtz-Institut füt Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany. (2018-10-15)
    During the past 25 years, the modulation of estrogen action by inhibition of 17β-hydroxysteroid dehydrogenase types 1 and 2 (17β-HSD1 and 17β-HSD2), respectively, has been pursued intensively. In the search for novel treatment options for estrogen-dependent diseases (EDD) and in order to explore estrogenic signaling pathways, a large number of steroidal and nonsteroidal inhibitors of these enzymes has been described in the literature. The present review gives a survey on the development of inhibitor classes as well as the structural formulas and biological properties of their most interesting representatives. In addition, rationally designed dual inhibitors of both 17β-HSD1 and steroid sulfatase (STS) as well as the first inhibitors of 17β-HSD14 are covered.
  • Exploration of ligand binding modes towards the identification of compounds targeting HuR: a combined STD-NMR and Molecular Modelling approach.

    Vasile, Francesca; Della Volpe, Serena; Ambrosio, Francesca Alessandra; Costa, Giosuè; Unver, M Yagiz; Zucal, Chiara; Rossi, Daniela; Martino, Emanuela; Provenzani, Alessandro; Hirsch, Anna K H; et al. (2018-09-13)
    Post-transcriptional processes have been recognised as pivotal in the control of gene expression, and impairments in RNA processing are reported in several pathologies (i.e., cancer and neurodegeneration). Focusing on RNA-binding proteins (RBPs), the involvement of Embryonic Lethal Abnormal Vision (ELAV) or Hu proteins and their complexes with target mRNAs in the aetiology of various dysfunctions, has suggested the great potential of compounds able to interfere with the complex stability as an innovative pharmacological strategy for the treatment of numerous diseases. Here, we present a rational follow-up investigation of the interaction between ELAV isoform HuR and structurally-related compounds (i.e., flavonoids and coumarins), naturally decorated with different functional groups, by means of STD-NMR and Molecular Modelling. Our results represent the foundation for the development of potent and selective ligands able to interfere with ELAV-RNA complexes.
  • Pathoblockers or antivirulence drugs as a new option for the treatment of bacterial infections

    Calvert, Matthew B; Jumde, Varsha R; Titz, Alexander
    The rapid development of antimicrobial resistance is threatening mankind to such an extent that the World Health Organization expects more deaths from infections than from cancer in 2050 if current trends continue. To avoid this scenario, new classes of anti-infectives must urgently be developed. Antibiotics with new modes of action are needed, but other concepts are also currently being pursued. Targeting bacterial virulence as a means of blocking pathogenicity is a promising new strategy for disarming pathogens. Furthermore, it is believed that this new approach is less susceptible towards resistance development. In this review, recent examples of anti-infective compounds acting on several types of bacterial targets, e.g., adhesins, toxins and bacterial communication, are described.
  • Biophysical Screening of a Focused Library for the Discovery of CYP121 Inhibitors as Novel Antimycobacterials.

    Brengel, Christian; Thomann, Andreas; Schifrin, Alexander; Allegretta, Giuseppe; Kamal, Ahmed A M; Haupenthal, Jörg; Schnorr, Isabell; Cho, Sang Hyun; Franzblau, Scott G; Empting, Martin; et al. (2017-10-09)
    The development of novel antimycobacterial agents against Mycobacterium tuberculosis (Mtb) is urgently required due to the appearance of multidrug resistance (MDR) combined with complicated long-term treatment. CYP121 was shown to be a promising novel target for inhibition of mycobacterial growth. In this study, we describe the rational discovery of new CYP121 inhibitors by a systematic screening based on biophysical and microbiological methods. The best hits originating from only one structural class gave initial information about molecular motifs required for binding and activity. The initial screening procedure was followed by mode-of-action studies and further biological characterizations. The results demonstrate superior antimycobacterial efficacy and a decreased toxicity profile of our frontrunner compound relative to the reference compound econazole. Due to its low molecular weight, promising biological profile, and physicochemical properties, this compound is an excellent starting point for further rational optimization.
  • Delivery system for budesonide based on lipid-DNA.

    Liu, Yun; Bos, I Sophie T; Oenema, Tjitske A; Meurs, Herman; Maarsingh, Harm; Hirsch, Anna K H; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-09-01)
    Budesonide is a hydrophobic glucocorticoid with high anti-inflammatory activity for the treatment of asthma, inflammatory bowel disease and rheumatoid arthritis. A micellar drug-delivery system based on lipid-DNA may provide a strategy to maximize its drug efficacy and reduce adverse effects. In this work, we report the use of lipid-DNAA (UU11mer), featuring two hydrophobic alkyl chains and forming micelles at a comparatively low critical micelle concentration, to render budesonide water-soluble with a high loading capacity (LC). The inhibition of interleukin-8 (IL-8) release shows that the new delivery system retains the inhibitory activity in cell-based assays. In conclusion, this research provides a novel approach to formulate and administer budesonide in a non-invasive manner, which dramatically improves its water-solubility while retaining its bioavailability.
  • Extracellular vesicles protect glucuronidase model enzymes during freeze-drying.

    Frank, Julia; Richter, Maximilian; de Rossi, Chiara; Lehr, Claus-Michael; Fuhrmann, Kathrin; Fuhrmann, Gregor; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-08-17)
    Extracellular vesicles (EVs) are natural nanoparticles that play important roles in intercellular communication and are increasingly studied for biosignalling, pathogenesis and therapy. Nevertheless, little is known about optimal conditions for their transfer and storage, and the potential impact on preserving EV-loaded cargoes. We present the first comprehensive stability assessment of different widely available types of EVs during various storage conditions including -80 °C, 4 °C, room temperature, and freeze-drying (lyophilisation). Lyophilisation of EVs would allow easy handling at room temperature and thus significantly enhance their expanded investigation. A model enzyme, β-glucuronidase, was loaded into different types of EVs derived from mesenchymal stem cells, endothelial cells and cancer cells. Using asymmetric flow field-flow fractionation we proved that the model enzyme is indeed stably encapsulated into EVs. When assessing enzyme activity as indicator for EV stability, and in comparison to liposomes, we show that EVs are intrinsically stable during lyophilisation, an effect further enhanced by cryoprotectants. Our findings provide new insight for exploring lyophilisation as a novel storage modality and we create an important basis for standardised and advanced EV applications in biomedical research.

View more