• A Biophysical Study with Carbohydrate Derivatives Explains the Molecular Basis of Monosaccharide Selectivity of the Pseudomonas aeruginosa Lectin LecB.

      Sommer, Roman; Exner, Thomas E; Titz, Alexander; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus C 2.3, D-66123, Saarbrücken, Germany; Department of Chemistry and Graduate School Chemical Biology, University of Konstanz, D-78457, Konstanz, Germany. (2014)
      The rise of resistances against antibiotics in bacteria is a major threat for public health and demands the development of novel antibacterial therapies. Infections with Pseudomonas aeruginosa are a severe problem for hospitalized patients and for patients suffering from cystic fibrosis. These bacteria can form biofilms and thereby increase their resistance towards antibiotics. The bacterial lectin LecB was shown to be necessary for biofilm formation and the inhibition with its carbohydrate ligands resulted in reduced amounts of biofilm. The natural ligands for LecB are glycosides of d-mannose and l-fucose, the latter displaying an unusual strong affinity. Interestingly, although mannosides are much weaker ligands for LecB, they do form an additional hydrogen bond with the protein in the crystal structure. To analyze the individual contributions of the methyl group in fucosides and the hydroxymethyl group in mannosides to the binding, we designed and synthesized derivatives of these saccharides. We report glycomimetic inhibitors that dissect the individual interactions of their saccharide precursors with LecB and give insight into the biophysics of binding by LecB. Furthermore, theoretical calculations supported by experimental thermodynamic data suggest a perturbed hydrogen bonding network for mannose derivatives as molecular basis for the selectivity of LecB for fucosides. Knowledge gained on the mode of interaction of LecB with its ligands at ambient conditions will be useful for future drug design.
    • Cinnamide Derivatives of d -Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa

      Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Wagner, Stefanie; Audfray, Aymeric; Prestel, Andreas; Möller, Heiko M.; Imberty, Anne; Titz, Alexander; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany.; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301); CNRS and Université Grenoble Alpes, BP53; 38041 Grenoble cedex 9 France; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301); CNRS and Université Grenoble Alpes, BP53; 38041 Grenoble cedex 9 France; Department of Chemistry and Graduate School Chemical Biology; University of Konstanz; 78457 Konstanz Germany; Department of Chemistry and Graduate School Chemical Biology; University of Konstanz; 78457 Konstanz Germany; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301); CNRS and Université Grenoble Alpes, BP53; 38041 Grenoble cedex 9 France; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany (2015-12)
    • Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging.

      Wagner, Stefanie; Hauck, Dirk; Hoffmann, Michael; Sommer, Roman; Joachim, Ines; Müller, Rolf; Imberty, Anne; Varrot, Annabelle; Titz, Alexander; HIPS, Helmholtz-Institut für pharmazeutische Forchung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-09-28)
      Biofilm formation by pathogenic bacteria is a hallmark of chronic infections. In many cases, lectins play key roles in establishing biofilms. The pathogen Pseudomonas aeruginosa often exhibiting various drug resistances employs its lectins LecA and LecB as virulence factors and biofilm building blocks. Therefore, inhibition of the function of these proteins is thought to have potential in developing "pathoblockers" preventing biofilm formation and virulence. A covalent lectin inhibitor specific to a carbohydrate binding site is described for the first time. Its application in the LecA-specific in vitro imaging of biofilms formed by P. aeruginosa is also reported.
    • Crystal Structures of Fungal Tectonin in Complex with O-Methylated Glycans Suggest Key Role in Innate Immune Defense.

      Sommer, Roman; Makshakova, Olga N; Wohlschlager, Therese; Hutin, Stephanie; Marsh, May; Titz, Alexander; Künzler, Markus; Varrot, Annabelle; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-03-06)
      Innate immunity is the first line of defense against pathogens and predators. To initiate a response, it relies on the detection of invaders, where lectin-carbohydrate interactions play a major role. O-Methylated glycans were previously identified as non-self epitopes and conserved targets for defense effector proteins belonging to the tectonin superfamily. Here, we present two crystal structures of Tectonin 2 from the mushroom Laccaria bicolor in complex with methylated ligands, unraveling the molecular basis for this original specificity. Furthermore, they revealed the formation of a ball-shaped tetramer with 24 binding sites distributed at its surface, resembling a small virus capsid. Based on the crystal structures, a methylation recognition motif was identified and found in the sequence of many tectonins from bacteria to human. Our results support a key role of tectonins in innate defense based on a distinctive and conserved type of lectin-glycan interaction.
    • Development of a competitive binding assay for the Burkholderia cenocepacia lectin BC2L-A and structure activity relationship of natural and synthetic inhibitors

      Beshr, Ghamdan; Sommer, Roman; Hauck, Dirk; Siebert, David Chan Bodin; Hofmann, Anna; Imberty, Anne; Titz, Alexander (2016)
    • Efficient Two Step β-Glycoside Synthesis from -Acetyl -Glucosamine: Scope and Limitations of Copper(II) Triflate-Catalyzed Glycosylation

      Sommer, Roman; Hauck, Dirk; Titz, Alexander; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany.
      β‐Linked glycosides of N‐acetyl glucosamine are widespread in nature. Their direct synthesis is hampered by the low reactivity of GlcNAc as a glycosyl donor. We report a selective and rapid copper(II) triflate‐catalyzed two‐step synthesis of β‐glycosides of GlcNAc from cheap GlcNAc as starting material without purification of intermediates. α‐Specific glycosylation can be achieved by increasing the amount of catalyst and extending reaction times.
    • New approaches to control infections: anti-biofilm strategies against gram-negative bacteria.

      Sommer, Roman; Joachim, Ines; Wagner, Stefanie; Titz, Alexander; University of Konstanz, Department of Chemistry and Zukunftskolleg, Universitätsstrasse 10, D-78457 Konstanz. (2013)
      Hospital-acquired bacterial infections, especially with Gram-negative pathogens, present a major threat due to the rapid spread of antibiotic-resistant strains. Targeting mechanisms of bacterial virulence has recently appeared as a promising new therapeutic paradigm. Biofilm formation is a bacterial lifestyle, which offers a survival advantage through its protective matrix against host immune defense and antibiotic treatment. Interfering with biogenesis of adhesive organelles, bacterial communication or carbohydrate-mediated adhesion as anti-biofilm strategies are reviewed.
    • O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

      Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
      Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.
    • Synthesis of mannoheptose derivatives and their evaluation as inhibitors of the lectin LecB from the opportunistic pathogen Pseudomonas aeruginosa.

      Hofmann, Anna; Sommer, Roman; Hauck, Dirk; Stifel, Julia; Göttker-Schnetmann, Inigo; Titz, Alexander; hemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), D-66123 Saarbrücken, Germany. (2015-05-05)
      Biofilm formation and chronic infections with Pseudomonas aeruginosa depend on lectins produced by the bacterium. The bacterial C-type lectin LecB binds to the two monosaccharides l-fucose and d-mannose and conjugates thereof. Previously, d-mannose derivatives with amide and sulfonamide substituents at C6 were reported as potent inhibitors of the bacterial lectin LecB and LecB-mediated bacterial surface adhesion. Because d-mannose establishes a hydrogen bond via its 6-OH group with Ser23 of LecB in the crystal structure and may be beneficial for binding affinity, we extended d-mannose and synthesized mannoheptoses bearing the free 6-OH group as well as amido and sulfonamido-substituents at C7. Two series of diastereomeric mannoheptoses were synthesized and the stereochemistry was determined by X-ray crystallography. The potency of the mannoheptoses as LecB inhibitors was assessed in a competitive binding assay. The data reveal a diastereoselectivity of LecB for (6S)-mannoheptose derivatives with increased activity over methyl α-d-mannoside.
    • The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery

      Sommer, Roman; Wagner, Stefanie; Varrot, Annabelle; Nycholat, Corwin M.; Khaledi, Ariane; Häussler, Susanne; Paulson, James C.; Imberty, Anne; Titz, Alexander (2016)