• Cinnamide Derivatives of d -Mannose as Inhibitors of the Bacterial Virulence Factor LecB from Pseudomonas aeruginosa

      Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Wagner, Stefanie; Audfray, Aymeric; Prestel, Andreas; Möller, Heiko M.; Imberty, Anne; Titz, Alexander; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS);Saarland University, Building A4.1, 66123 Saarbruecken, Germany.; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301); CNRS and Université Grenoble Alpes, BP53; 38041 Grenoble cedex 9 France; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301); CNRS and Université Grenoble Alpes, BP53; 38041 Grenoble cedex 9 France; Department of Chemistry and Graduate School Chemical Biology; University of Konstanz; 78457 Konstanz Germany; Department of Chemistry and Graduate School Chemical Biology; University of Konstanz; 78457 Konstanz Germany; Centre de Recherche sur les Macromolécules Végétales (CERMAV-UPR5301); CNRS and Université Grenoble Alpes, BP53; 38041 Grenoble cedex 9 France; Chemical Biology of Carbohydrates; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS); Universitätsstrasse 10 66123 Saarbrücken Germany (2015-12)
    • Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging.

      Wagner, Stefanie; Hauck, Dirk; Hoffmann, Michael; Sommer, Roman; Joachim, Ines; Müller, Rolf; Imberty, Anne; Varrot, Annabelle; Titz, Alexander; HIPS, Helmholtz-Institut für pharmazeutische Forchung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2017-09-28)
      Biofilm formation by pathogenic bacteria is a hallmark of chronic infections. In many cases, lectins play key roles in establishing biofilms. The pathogen Pseudomonas aeruginosa often exhibiting various drug resistances employs its lectins LecA and LecB as virulence factors and biofilm building blocks. Therefore, inhibition of the function of these proteins is thought to have potential in developing "pathoblockers" preventing biofilm formation and virulence. A covalent lectin inhibitor specific to a carbohydrate binding site is described for the first time. Its application in the LecA-specific in vitro imaging of biofilms formed by P. aeruginosa is also reported.
    • Crystal Structures of Fungal Tectonin in Complex with O-Methylated Glycans Suggest Key Role in Innate Immune Defense.

      Sommer, Roman; Makshakova, Olga N; Wohlschlager, Therese; Hutin, Stephanie; Marsh, May; Titz, Alexander; Künzler, Markus; Varrot, Annabelle; HIPS, Helmholtz-Institut für pharmazeutische Forschung Saarland, Universitätscampus 8.1, 66123 Saarbrücken, Germany. (2018-03-06)
      Innate immunity is the first line of defense against pathogens and predators. To initiate a response, it relies on the detection of invaders, where lectin-carbohydrate interactions play a major role. O-Methylated glycans were previously identified as non-self epitopes and conserved targets for defense effector proteins belonging to the tectonin superfamily. Here, we present two crystal structures of Tectonin 2 from the mushroom Laccaria bicolor in complex with methylated ligands, unraveling the molecular basis for this original specificity. Furthermore, they revealed the formation of a ball-shaped tetramer with 24 binding sites distributed at its surface, resembling a small virus capsid. Based on the crystal structures, a methylation recognition motif was identified and found in the sequence of many tectonins from bacteria to human. Our results support a key role of tectonins in innate defense based on a distinctive and conserved type of lectin-glycan interaction.
    • O-Alkylated heavy atom carbohydrate probes for protein X-ray crystallography: Studies towards the synthesis of methyl 2-O-methyl-L-selenofucopyranoside.

      Sommer, Roman; Hauck, Dirk; Varrot, Annabelle; Imberty, Anne; Künzler, Markus; Titz, Alexander; Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS),Saarland Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2016)
      Selenoglycosides are used as reactive glycosyl donors in the syntheses of oligosaccharides. In addition, such heavy atom analogs of natural glycosides are useful tools for structure determination of their lectin receptors using X-ray crystallography. Some lectins, e.g., members of the tectonin family, only bind to carbohydrate epitopes with O-alkylated ring hydroxy groups. In this context, we report the first synthesis of an O-methylated selenoglycoside, specifically methyl 2-O-methyl-L-selenofucopyranoside, a ligand of the lectin tectonin-2 from the mushroom Laccaria bicolor. The synthetic route required a strategic revision and further optimization due to the intrinsic lability of alkyl selenoglycosides, in particular for the labile fucose. Here, we describe a successful synthetic access to methyl 2-O-methyl-L-selenofucopyranoside in 9 linear steps and 26% overall yield starting from allyl L-fucopyranoside.
    • The virulence factor LecB varies in clinical isolates: consequences for ligand binding and drug discovery

      Sommer, Roman; Wagner, Stefanie; Varrot, Annabelle; Nycholat, Corwin M.; Khaledi, Ariane; Häussler, Susanne; Paulson, James C.; Imberty, Anne; Titz, Alexander (2016)