Recent Submissions

  • PK/PD-based adaptive tailoring of oseltamivir doses to treat within-host influenza viral infections.

    Montaseri, Ghazal; Boianelli, Alessandro; Hernandez-Vargas, Esteban A; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-07-19)
    Influenza A virus (IAV) is a latent global threat to human health. In view of the risk of pandemics, prophylactic and curative treatments are essential. Oseltamivir is a neuraminidase inhibitor efficiently supporting recovery from influenza infections. Current common clinical practice is a constant drug dose (75 or 150 mg) administered at regular time intervals twice a day. We aim to use quantitative systems pharmacology to propose an efficient adaptive drug scheduling. We combined the mathematical model for IAV infections validated by murine data, which captures the viral dynamics and the dynamics of the immune host response, with a pharmacokinetic (PK)/pharmacodynamic (PD) model of oseltamivir. Next, we applied an adaptive impulsive feedback control method to systematically calculate the adaptive dose of oseltamivir in dependence on the viral load and the number of immune effectors at the time of drug administration. Our in silico results revealed that the treatment with adaptive control-based drug scheduling is able to either increase the drug virological efficacy or reduce the drug dose while keeping the same virological efficacy. Thus, adaptive adjustment of the drug dose would reduce not only the potential side effects but also the amount of stored oseltamivir required for the prevention of outbreaks.
  • Estimation of the cancer risk induced by therapies targeting stem cell replication and treatment recommendations.

    Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2018-08-06)
    Rejuvenation of stem cell activity might increase life expectancy by prolonging functionality of organs. Higher stem cell replication rates also bear the risk of cancer. The extent of this risk is not known. While it is difficult to evaluate this cancer risk in experiments, it can be estimated using a mathematical model for tissue homeostasis by stem cell replication and associated cancer risk. The model recapitulates the observation that treatments targeting stem cell replication can induce a substantial delay of organ failure. The model predicts that the cancer risk is minor under particular conditions. It depends on the assumed implications for cell damage repair during treatment. The benefit of rejuvenation therapy and its impact on cancer risk depend on the biological age at the time of treatment and on the overall cell turnover rate of the organs. Different organs have to be considered separately in the planning of systemic treatments. In recent years, the transfer of blood from young to old individuals was shown to bear the potential of rejuvenation of stem cell activity. In this context, the model predicts that the treatment schedule is critical for success and that schedules successful in animal experiments are not transferable to humans. Guidelines for successful protocols are proposed. The model presented here may be used as a guidance for the development of stem cell rejuvenation treatment protocols and the identification of critical parameters for cancer risk.
  • Statistical mechanics of cell decision-making: the cell migration force distribution

    Hatzikirou, Haralampos; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany.
  • An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck).

    Samir, M; Hamed, M; Abdallah, F; Kinh Nguyen, V; Hernandez-Vargas, E A; Seehusen, F; Baumgärtner, W; Hussein, A; Ali, A A H; Pessler,, F; TWINCORE, Zentrum für experimentelle uns klinische Ifektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2018-01-24)
    The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.
  • Implications of Intravital Imaging of Murine Germinal Centers on the Control of B Cell Selection and Division.

    Binder, Sebastian C; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016)
    Intravital imaging of antibody optimization in germinal center (GC) reactions has set a new dimension in the understanding of the humoral immune response during the last decade. The inclusion of spatio-temporal cellular dynamics in the research on GCs required analysis using the agent-based mathematical models. In this study, we integrate the available intravital imaging data from various research groups and incorporate these into a quantitative mathematical model of GC reactions and antibody affinity maturation. Interestingly, the integration of data concerning the spatial organization of GCs and B cell motility allows to draw conclusions on the strength of the selection pressure and the control of B cell division by T follicular helper cells.
  • Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms.

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-09-09)
    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors.
  • Multidimensional Analysis Integrating Human T-Cell Signatures in Lymphatic Tissues with Sex of Humanized Mice for Prediction of Responses after Dendritic Cell Immunization.

    Volk, Valery; Reppas, Andreas I; Robert, Philippe A; Spineli, Loukia M; Sundarasetty, Bala Sai; Theobald, Sebastian J; Schneider, Andreas; Gerasch, Laura; Deves Roth, Candida; Klöss, Stephan; Koehl, Ulrike; von Kaisenberg, Constantin; Figueiredo, Constanca; Hatzikirou, Haralampos; Meyer-Hermann, Michael; Stripecke, Renata; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38124 Braunschweig, Germany. (2017)
    Mice transplanted with human cord blood-derived hematopoietic stem cells (HSCs) became a powerful experimental tool for studying the heterogeneity of human immune reconstitution and immune responses in vivo. Yet, analyses of human T cell maturation in humanized models have been hampered by an overall low immune reactivity and lack of methods to define predictive markers of responsiveness. Long-lived human lentiviral induced dendritic cells expressing the cytomegalovirus pp65 protein (iDCpp65) promoted the development of pp65-specific human CD8+ T cell responses in NOD.Cg-Rag1 tm1Mom -Il2rγ tm1Wj humanized mice through the presentation of immune-dominant antigenic epitopes (signal 1), expression of co-stimulatory molecules (signal 2), and inflammatory cytokines (signal 3). We exploited this validated system to evaluate the effects of mouse sex in the dynamics of T cell homing and maturation status in thymus, blood, bone marrow, spleen, and lymph nodes. Statistical analyses of cell relative frequencies and absolute numbers demonstrated higher CD8+ memory T cell reactivity in spleen and lymph nodes of immunized female mice. In order to understand to which extent the multidimensional relation between organ-specific markers predicted the immunization status, the immunophenotypic profiles of individual mice were used to train an artificial neural network designed to discriminate immunized and non-immunized mice. The highest accuracy of immune reactivity prediction could be obtained from lymph node markers of female mice (77.3%). Principal component analyses further identified clusters of markers best suited to describe the heterogeneity of immunization responses in vivo. A correlation analysis of these markers reflected a tissue-specific impact of immunization. This allowed for an organ-resolved characterization of the immunization status of individual mice based on the identified set of markers. This new modality of multidimensional analyses can be used as a framework for defining minimal but predictive signatures of human immune responses in mice and suggests critical markers to characterize responses to immunization after HSC transplantation.
  • Cellular automaton models for time-correlated random walks: derivation and analysis.

    Nava-Sedeño, J M; Hatzikirou, H; Klages, R; Deutsch, A; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-12-05)
    Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is "data-driven". Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
  • The biology and mathematical modelling of glioma invasion: a review.

    Alfonso, J C L; Talkenberger, K; Seifert, M; Klink, B; Hawkins-Daarud, A; Swanson, K R; Hatzikirou, H; Deutsch, A; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-11)
    Adult gliomas are aggressive brain tumours associated with low patient survival rates and limited life expectancy. The most important hallmark of this type of tumour is its invasive behaviour, characterized by a markedly phenotypic plasticity, infiltrative tumour morphologies and the ability of malignant progression from low- to high-grade tumour types. Indeed, the widespread infiltration of healthy brain tissue by glioma cells is largely responsible for poor prognosis and the difficulty of finding curative therapies. Meanwhile, mathematical models have been established to analyse potential mechanisms of glioma invasion. In this review, we start with a brief introduction to current biological knowledge about glioma invasion, and then critically review and highlight future challenges for mathematical models of glioma invasion.
  • Therapeutic Potential of Bacteria against Solid Tumors.

    Hatzikirou, Haralampos; López Alfonso, Juan Carlos; Leschner, Sara; Weiss, Siegfried; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-04-01)
    Intentional bacterial infections can produce efficacious antitumor responses in mice, rats, dogs, and humans. However, low overall success rates and intense side effects prevent such approaches from being employed clinically. In this work, we titered bacteria and/or the proinflammatory cytokine TNFα in a set of established murine models of cancer. To interpret the experiments conducted, we considered and calibrated a tumor-effector cell recruitment model under the influence of functional tumor-associated vasculature. In this model, bacterial infections and TNFα enhanced immune activity and altered vascularization in the tumor bed. Information to predict bacterial therapy outcomes was provided by pretreatment tumor size and the underlying immune recruitment dynamics. Notably, increasing bacterial loads did not necessarily produce better long-term tumor control, suggesting that tumor sizes affected optimal bacterial loads. Short-term treatment responses were favored by high concentrations of effector cells postinjection, such as induced by higher bacterial loads, but in the longer term did not correlate with an effective restoration of immune surveillance. Overall, our findings suggested that a combination of intermediate bacterial loads with low levels TNFα administration could enable more favorable outcomes elicited by bacterial infections in tumor-bearing subjects. Cancer Res; 77(7); 1553-63. ©2017 AACR.
  • A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance.

    Zhao, Gang; Wirth, Dagmar; Schmitz, Ingo; Meyer-Hermann, Michael; Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106, Germany. (2017-11-08)
    Physiological insulin secretion exhibits various temporal patterns, the dysregulation of which is involved in diabetes development. We analyzed the impact of first-phase and pulsatile insulin release on glucose and lipid control with various hepatic insulin signaling networks. The mathematical model suggests that atypical protein kinase C (aPKC) undergoes a bistable switch-on and switch-off, under the control of insulin receptor substrate 2 (IRS2). The activation of IRS1 and IRS2 is temporally separated due to the inhibition of IRS1 by aPKC. The model further shows that the timing of aPKC switch-off is delayed by reduced first-phase insulin and reduced amplitude of insulin pulses. Based on these findings, we propose a sequential model of postprandial hepatic control of glucose and lipid by insulin, according to which delayed aPKC switch-off contributes to selective hepatic insulin resistance, which is a long-standing paradox in the field.
  • The distinctive germinal center phase of IgE+ B lymphocytes limits their contribution to the classical memory response.

    He, Jin-Shu; Meyer-Hermann, Michael; Xiangying, Deng; Zuan, Lim Yok; Jones, Leigh Ann; Ramakrishna, Lakshmi; de Vries, Victor C; Dolpady, Jayashree; Aina, Hoi; Joseph, Sabrina; Narayanan, Sriram; Subramaniam, Sharrada; Puthia, Manoj; Wong, Glenn; Xiong, Huizhong; Poidinger, Michael; Urban, Joseph F; Lafaille, Juan J; Curotto de Lafaille, Maria A; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str.7, 30625 Hannover, Germany. (2013-11-18)
    The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE(+) cells in memory responses is particularly unclear. IgE(+) B cell differentiation is characterized by a transient GC phase, a bias toward the plasma cell (PC) fate, and dependence on sequential switching for the production of high-affinity IgE. We show here that IgE(+) GC B cells are unfit to undergo the conventional GC differentiation program due to impaired B cell receptor function and increased apoptosis. IgE(+) GC cells fail to populate the GC light zone and are unable to contribute to the memory and long-lived PC compartments. Furthermore, we demonstrate that direct and sequential switching are linked to distinct B cell differentiation fates: direct switching generates IgE(+) GC cells, whereas sequential switching gives rise to IgE(+) PCs. We propose a comprehensive model for the generation and memory of IgE responses.
  • Windows of opportunity for Ebola virus infection treatment and vaccination.

    Nguyen, Van Kinh; Hernandez-Vargas, Esteban A; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2017-08-21)
    Ebola virus (EBOV) infection causes a high death toll, killing a high proportion of EBOV-infected patients within 7 days. Comprehensive data on EBOV infection are fragmented, hampering efforts in developing therapeutics and vaccines against EBOV. Under this circumstance, mathematical models become valuable resources to explore potential controlling strategies. In this paper, we employed experimental data of EBOV-infected nonhuman primates (NHPs) to construct a mathematical framework for determining windows of opportunity for treatment and vaccination. Considering a prophylactic vaccine based on recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (rVSV-EBOV), vaccination could be protective if a subject is vaccinated during a period from one week to four months before infection. For the case of a therapeutic vaccine based on monoclonal antibodies (mAbs), a single dose might resolve the invasive EBOV replication even if it was administrated as late as four days after infection. Our mathematical models can be used as building blocks for evaluating therapeutic and vaccine modalities as well as for evaluating public health intervention strategies in outbreaks. Future laboratory experiments will help to validate and refine the estimates of the windows of opportunity proposed here.
  • Batch Cultivation Model for Biopolymer Production

    Torres-Cerna, C. E.; Alanis, A. Y.; Poblete-Castro, I.; Hernandez-Vargas, E. A.; BRICS, Braunschweiger Zentrum für Systembiology, Rbenring 56, 38106 Braunschweig, Germany. (2017-04-15)
  • Influenza epidemic surveillance and prediction based on electronic health record data from an out-of-hours general practitioner cooperative: model development and validation on 2003-2015 data.

    Michiels, Barbara; Nguyen, Van Kinh; Coenen, Samuel; Ryckebosch, Philippe; Bossuyt, Nathalie; Hens, Niel; BRICS - Braunschweig Integrated Centre of Systems Biology, Rebenring 56. 38106 Braunschweig, Germany. (2017-01-18)
    Annual influenza epidemics significantly burden health care. Anticipating them allows for timely preparation. The Scientific Institute of Public Health in Belgium (WIV-ISP) monitors the incidence of influenza and influenza-like illnesses (ILIs) and reports on a weekly basis. General practitioners working in out-of-hour cooperatives (OOH GPCs) register diagnoses of ILIs in an instantly accessible electronic health record (EHR) system. This article has two objectives: to explore the possibility of modelling seasonal influenza epidemics using EHR ILI data from the OOH GPC Deurne-Borgerhout, Belgium, and to attempt to develop a model accurately predicting new epidemics to complement the national influenza surveillance by WIV-ISP.
  • Cancer therapeutic potential of combinatorial immuno- and vasomodulatory interventions.

    Hatzikirou, H; Alfonso, J C L; Mühle, S; Stern, C; Weiss, S; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38124 Braunschweig, Germany. (2015-11-06)
    Currently, most of the basic mechanisms governing tumour-immune system interactions, in combination with modulations of tumour-associated vasculature, are far from being completely understood. Here, we propose a mathematical model of vascularized tumour growth, where the main novelty is the modelling of the interplay between functional tumour vasculature and effector cell recruitment dynamics. Parameters are calibrated on the basis of different in vivo immunocompromised Rag1(-/-) and wild-type (WT) BALB/c murine tumour growth experiments. The model analysis supports that tumour vasculature normalization can be a plausible and effective strategy to treat cancer when combined with appropriate immunostimulations. We find that improved levels of functional tumour vasculature, potentially mediated by normalization or stress alleviation strategies, can provide beneficial outcomes in terms of tumour burden reduction and growth control. Normalization of tumour blood vessels opens a therapeutic window of opportunity to augment the antitumour immune responses, as well as to reduce intratumoral immunosuppression and induced hypoxia due to vascular abnormalities. The potential success of normalizing tumour-associated vasculature closely depends on the effector cell recruitment dynamics and tumour sizes. Furthermore, an arbitrary increase in the initial effector cell concentration does not necessarily imply better tumour control. We evidence the existence of an optimal concentration range of effector cells for tumour shrinkage. Based on these findings, we suggest a theory-driven therapeutic proposal that optimally combines immuno- and vasomodulatory interventions.
  • Analysis of Practical Identifiability of a Viral Infection Model.

    Nguyen, Van Kinh; Klawonn, Frank; Mikolajczyk, Rafael; Hernandez-Vargas, Esteban A.; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
    Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.
  • Diversity of coupled oscillators can enhance their synchronization.

    Montaseri, Ghazal; Meyer-Hermann, Michael; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig, Germany. (2016-10)
    The heterogeneity of coupled oscillators is important for the degree of their synchronization. According to the classical Kuramoto model, larger heterogeneity reduces synchronization. Here, we show that in a model for coupled pancreatic β-cells, higher diversity of the cells induces higher synchrony. We find that any system of coupled oscillators that oscillates on two time scales and in which heterogeneity causes a transition from chaotic to damped oscillations on the fast time scale exhibits this property. Thus, synchronization of a subset of oscillating systems can be enhanced by increasing the heterogeneity of the system constituents.
  • Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights.

    Alfonso, J C L; Köhn-Luque, A; Stylianopoulos, T; Feuerhake, F; Deutsch, A; Hatzikirou, H; Braunschweiger zentrum für Systembiologie, Rebenring 56,38106 Braunschweig, Germany. (2016-11-23)
    Gliomas are highly invasive brain tumours characterised by poor prognosis and limited response to therapy. There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve tumour blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation induced by blood vessel occlusion/collapse. In contrast, the therapeutic intention of normalising the abnormal tumour vasculature is to improve the efficacy of conventional treatment modalities. Although these strategies have shown therapeutic potential, it remains unclear why they both often fail to control glioma growth. To shed some light on this issue, we propose a mathematical model based on the migration/proliferation dichotomy of glioma cells in order to investigate why vaso-modulatory interventions have shown limited success in terms of tumour clearance. We found the existence of a critical cell proliferation/diffusion ratio that separates glioma responses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the front speed and increase the infiltration width, for those in the other regime, the invasion speed increases and infiltration width decreases. We discuss how these in silico findings can be used to guide individualised vaso-modulatory approaches to improve treatment success rates.
  • Hierarchical effects of pro-inflammatory cytokines on the post-influenza susceptibility to pneumococcal coinfection.

    Duvigneau, Stefanie; Sharma-Chawla, Niharika; Boianelli, Alessandro; Stegemann-Koniszewski, Sabine; Nguyen, Van Kinh; Bruder, Dunja; Hernandez-Vargas, Esteban A.; BRICS, Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106 Braunschweig. Germany. (2016-11-22)
    In the course of influenza A virus (IAV) infections, a secondary bacterial infection frequently leads to serious respiratory conditions provoking high hospitalization and death tolls. Although abundant pro-inflammatory responses have been reported as key contributing factors for these severe dual infections, the relative contributions of cytokines remain largely unclear. In the current study, mathematical modelling based on murine experimental data dissects IFN-γ as a cytokine candidate responsible for impaired bacterial clearance, thereby promoting bacterial growth and systemic dissemination during acute IAV infection. We also found a time-dependent detrimental role of IL-6 in curtailing bacterial outgrowth which was not as distinct as for IFN-γ. Our numerical simulations suggested a detrimental effect of IFN-γ alone and in synergism with IL-6 but no conclusive pathogenic effect of IL-6 and TNF-α alone. This work provides a rationale to understand the potential impact of how to manipulate temporal immune components, facilitating the formulation of hypotheses about potential therapeutic strategies to treat coinfections.

View more