• A clonotypic Vγ4Jγ1/Vδ5Dδ2Jδ1 innate γδ T-cell population restricted to the CCR6⁺CD27⁻ subset.

      Kashani, Elham; Föhse, Lisa; Raha, Solaiman; Sandrock, Inga; Oberdörfer, Linda; Koenecke, Christian; Suerbaum, Sebastian; Weiss, Siegfried; Prinz, Immo; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Here we investigate the TCR repertoire of mouse Vγ4(+) γδ T cells in correlation with their developmental origin and homeostasis. By deep sequencing we identify a high frequency of straight Vδ5Dδ2Jδ1 germline rearrangements without P- and N-nucleotides within the otherwise highly diverse Trd repertoire of Vγ4(+) cells. This sequence is infrequent in CCR6(-)CD27(+) cells, but abundant among CCR6(+)CD27(-) γδ T cells. Using an inducible Rag1 knock-in mouse model, we show that γδ T cells generated in the adult thymus rarely contain this germline-rearranged Vδ5Dδ2Jδ1 sequence, confirming its fetal origin. Single-cell analysis and deep sequencing of the Trg locus reveal a dominant CDR3 junctional motif that completes the TCR repertoire of invariant Vγ4(+)Vδ5(+) cells. In conclusion, this study identifies an innate subset of fetal thymus-derived γδ T cells with an invariant Vγ4(+)Vδ5(+) TCR that is restricted to the CCR6(+)CD27(-) subset of γδ T cells.
    • Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production.

      Michelucci, Alessandro; Cordes, Thekla; Ghelfi, Jenny; Pailot, Arnaud; Reiling, Norbert; Goldmann, Oliver; Binz, Tina; Wegner, André; Tallam, Aravind; Rausell, Antonio; et al. (2013-05-07)
      Immunoresponsive gene 1 (Irg1) is highly expressed in mammalian macrophages during inflammation, but its biological function has not yet been elucidated. Here, we identify Irg1 as the gene coding for an enzyme producing itaconic acid (also known as methylenesuccinic acid) through the decarboxylation of cis-aconitate, a tricarboxylic acid cycle intermediate. Using a gain-and-loss-of-function approach in both mouse and human immune cells, we found Irg1 expression levels correlating with the amounts of itaconic acid, a metabolite previously proposed to have an antimicrobial effect. We purified IRG1 protein and identified its cis-aconitate decarboxylating activity in an enzymatic assay. Itaconic acid is an organic compound that inhibits isocitrate lyase, the key enzyme of the glyoxylate shunt, a pathway essential for bacterial growth under specific conditions. Here we show that itaconic acid inhibits the growth of bacteria expressing isocitrate lyase, such as Salmonella enterica and Mycobacterium tuberculosis. Furthermore, Irg1 gene silencing in macrophages resulted in significantly decreased intracellular itaconic acid levels as well as significantly reduced antimicrobial activity during bacterial infections. Taken together, our results demonstrate that IRG1 links cellular metabolism with immune defense by catalyzing itaconic acid production.