• Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic.

      Leschner, Sara; Deyneko, Igor V; Lienenklaus, Stefan; Wolf, Kathrin; Bloecker, Helmut; Bumann, Dirk; Loessner, Holger; Weiss, Siegfried; Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany. sara.leschner@helmholtz-hzi.de (2012-04)
      Conventional cancer therapies are often limited in effectiveness and exhibit strong side effects. Therefore, alternative therapeutic strategies are demanded. The employment of tumor-colonizing bacteria that exert anticancer effects is such a novel approach that attracts increasing attention. For instance, Salmonella enterica serovar Typhimurium has been used in many animal tumor models as well as in first clinical studies. These bacteria exhibit inherent tumoricidal effects. In addition, they can be used to deliver therapeutic agents. However, bacterial expression has to be restricted to the tumor to prevent toxic substances from harming healthy tissue. Therefore, we screened an S. Typhimurium promoter-trap library to identify promoters that exclusively drive gene expression in the cancerous tissue. Twelve elements could be detected that show reporter gene expression in tumors but not in spleen and liver. In addition, a DNA motif was identified that appears to be necessary for tumor specificity. Now, such tumor-specific promoters can be used to safely express therapeutic proteins by tumor-colonizing S. Typhimurium directly in the neoplasia.
    • An integrative computational approach to effectively guide experimental identification of regulatory elements in promoters.

      Deyneko, Igor V; Weiss, Siegfried; Leschner, Sara; Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstr, 7, 38124 Braunschweig, Germany. Igor.Deyneko@helmholtz-hzi.de (2012)
      Transcriptional activity of genes depends on many factors like DNA motifs, conformational characteristics of DNA, melting etc. and there are computational approaches for their identification. However, in real applications, the number of predicted, for example, DNA motifs may be considerably large. In cases when various computational programs are applied, systematic experimental knock out of each of the potential elements obviously becomes nonproductive. Hence, one needs an approach that is able to integrate many heterogeneous computational methods and upon that suggest selected regulatory elements for experimental verification.
    • Visualizing production of beta interferon by astrocytes and microglia in brain of La Crosse virus-infected mice.

      Kallfass, Carsten; Ackerman, Andreas; Lienenklaus, Stefan; Weiss, Siegfried; Heimrich, Bernd; Staeheli, Peter; Department of Virology, University of Freiburg, Freiburg, Germany. (2012-10)
      Beta interferon (IFN-β) is a major component of innate immunity in mammals, but information on the in vivo source of this cytokine after pathogen infection is still scarce. To identify the cell types responsible for IFN-β production during viral encephalitis, we used reporter mice that express firefly luciferase under the control of the IFN-β promoter and stained organ sections with luciferase-specific antibodies. Numerous luciferase-positive cells were detected in regions of La Crosse virus (LACV)-infected mouse brains that contained many infected cells. Double-staining experiments with cell-type-specific markers revealed that similar numbers of astrocytes and microglia of infected brains were luciferase positive, whereas virus-infected neurons rarely contained detectable levels of luciferase. Interestingly, if a mutant LACV unable of synthesizing the IFN-antagonistic factor NSs was used for challenge, the vast majority of the IFN-β-producing cells in infected brains were astrocytes rather than microglia. Similar conclusions were reached in a second series of experiments in which conditional reporter mice expressing the luciferase reporter gene solely in defined cell types were infected with wild-type or mutant LACV. Collectively, our data suggest that glial cells rather than infected neurons represent the major source of IFN-β in LACV-infected mouse brains. They further indicate that IFN-β synthesis in astrocytes and microglia is differentially affected by the viral IFN antagonist, presumably due to differences in LACV susceptibility of these two cell types.