• Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis.

      Khorooshi, Reza; Mørch, Marlene Thorsen; Holm, Thomas Hellesøe; Berg, Carsten Tue; Dieu, Ruthe Truong; Dræby, Dina; Issazadeh-Navikas, Shohreh; Weiß, Siegfried; Lienenklaus, Stefan; Owens, Trevor; et al. (2015-07)
      The Type I interferons (IFN), beta (IFN-β) and the alpha family (IFN-α), act through a common receptor and have anti-inflammatory effects. IFN-β is used to treat multiple sclerosis (MS) and is effective against experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Mice with EAE show elevated levels of Type I IFNs in the central nervous system (CNS), suggesting a role for endogenous Type I IFN during inflammation. However, the therapeutic benefit of Type I IFN produced in the CNS remains to be established. The aim of this study was to examine whether experimentally induced CNS-endogenous Type I IFN influences EAE. Using IFN-β reporter mice, we showed that direct administration of polyinosinic-polycytidylic acid (poly I:C), a potent inducer of IFN-β, into the cerebrospinal fluid induced increased leukocyte numbers and transient upregulation of IFN-β in CD45/CD11b-positive cells located in the meninges and choroid plexus, as well as enhanced IFN-β expression by parenchymal microglial cells. Intrathecal injection of poly I:C to mice showing first symptoms of EAE substantially increased the normal disease-associated expression of IFN-α, IFN-β, interferon regulatory factor-7 and IL-10 in CNS, and disease worsening was prevented for as long as IFN-α/β was expressed. In contrast, there was no therapeutic effect on EAE in poly I:C-treated IFN receptor-deficient mice. IFN-dependent microglial and astrocyte response included production of the chemokine CXCL10. These results show that Type I IFN induced within the CNS can play a protective role in EAE and highlight the role of endogenous type I IFN in mediating neuroprotection.
    • NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs.

      Schleicher, Ulrike; Liese, Jan; Knippertz, Ilka; Kurzmann, Claudia; Hesse, Andrea; Heit, Antje; Fischer, Jens A A; Weiss, Siegfried; Kalinke, Ulrich; Kunz, Stefanie; et al. (2007-04-16)
      Natural killer (NK) cells are sentinel components of the innate response to pathogens, but the cell types, pathogen recognition receptors, and cytokines required for their activation in vivo are poorly defined. Here, we investigated the role of plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs), Toll-like receptors (TLRs), and of NK cell stimulatory cytokines for the induction of an NK cell response to the protozoan parasite Leishmania infantum. In vitro, pDCs did not endocytose Leishmania promastigotes but nevertheless released interferon (IFN)-alpha/beta and interleukin (IL)-12 in a TLR9-dependent manner. mDCs rapidly internalized Leishmania and, in the presence of TLR9, produced IL-12, but not IFN-alpha/beta. Depletion of pDCs did not impair the activation of NK cells in L. infantum-infected mice. In contrast, L. infantum-induced NK cell cytotoxicity and IFN-gamma production were abolished in mDC-depleted mice. The same phenotype was observed in TLR9(-/-) mice, which lacked IL-12 expression by mDCs, and in IL-12(-/-) mice, whereas IFN-alpha/beta receptor(-/-) mice showed only a minor reduction of NK cell IFN-gamma expression. This study provides the first direct evidence that mDCs are essential for eliciting NK cell cytotoxicity and IFN-gamma release in vivo and demonstrates that TLR9, mDCs, and IL-12 are functionally linked to the activation of NK cells in visceral leishmaniasis.
    • Synergistic and differential modulation of immune responses by Hsp60 and lipopolysaccharide.

      Osterloh, Anke; Kalinke, Ulrich; Weiss, Siegfried; Fleischer, Bernhard; Breloer, Minka; Department of Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany. osterloh@bni.uni-hamburg.de (2007-02-16)
      Activation of professional antigen-presenting cells (APC) is a crucial step in the initiation of an efficient immune response. In this study we show that Hsp60 mediates immune stimulation by different mechanisms, dependent and independent of lipopolysaccharide (LPS). We have demonstrated earlier that both, Hsp60 and LPS, increase antigen-specific interferon (IFN) gamma release in T cells. Here we show that in contrast to LPS Hsp60 induces IFNalpha production in professional APC. Neutralization of IFNalpha as well as the absence of functional IFNalphabeta receptor on APC and T cells interfered with Hsp60-mediated IFNgamma secretion in antigen-dependent T cell activation, strongly suggesting that IFNalpha represents one factor contributing to Hsp60-specific immune stimulation. On the other hand, we show that Hsp60 bound to the cell surface of APC colocalizes with the LPS co-receptor CD14 and LPS binding sites. Hsp60 specifically binds bacterial LPS and both molecules synergistically enhanced IL-12p40 production in APC and IFNgamma release in antigen-dependent T cell activation. This effect was Hsp60-specific and dependent on LPS-binding by Hsp60. Furthermore, we show that Hsp60 exclusively binds to macrophages and DC but not to T or B lymphocytes and that both, T cell stimulation by Hsp60 as well as Hsp60/LPS complexes, strictly depends on the presence of professional APC and is not mediated by B cells. Taken together, our data support an extension of the concept of Hsp60 as an endogenous danger signal: besides its function as a classical danger signal indicating unplanned tissue destruction to the innate immune system, in the incident of bacterial infection extracellular Hsp60 may bind LPS and facilitate microbe recognition by lowering the threshold of pathogen-associated molecular pattern (PAMP) detection and enhancing Toll-like receptor (TLR) signaling.
    • Type I Interferons Interfere with the Capacity of mRNA Lipoplex Vaccines to Elicit Cytolytic T Cell Responses.

      De Beuckelaer, Ans; Pollard, Charlotte; Van Lint, Sandra; Roose, Kenny; Van Hoecke, Lien; Naessens, Thomas; Udhayakumar, Vimal Kumar; Smet, Muriel; Sanders, Niek; Lienenklaus, Stefan; et al. (2016-11)
      Given their high potential to evoke cytolytic T cell responses, tumor antigen-encoding messenger RNA (mRNA) vaccines are now being intensively explored as therapeutic cancer vaccines. mRNA vaccines clearly benefit from wrapping the mRNA into nano-sized carriers such as lipoplexes that protect the mRNA from degradation and increase its uptake by dendritic cells in vivo. Nevertheless, the early innate host factors that regulate the induction of cytolytic T cells to mRNA lipoplex vaccines have remained unresolved. Here, we demonstrate that mRNA lipoplexes induce a potent type I interferon (IFN) response upon subcutaneous, intradermal and intranodal injection. Regardless of the route of immunization applied, these type I IFNs interfered with the generation of potent cytolytic T cell responses. Most importantly, blocking type I IFN signaling at the site of immunization through the use of an IFNAR blocking antibody greatly enhanced the prophylactic and therapeutic antitumor efficacy of mRNA lipoplexes in the highly aggressive B16 melanoma model. As type I IFN induction appears to be inherent to the mRNA itself rather than to unique properties of the mRNA lipoplex formulation, preventing type I IFN induction and/or IFNAR signaling at the site of immunization might constitute a widely applicable strategy to improve the potency of mRNA vaccination.