group leader: Prof. Wirth

Recent Submissions

  • Identification of a Predominantly Interferon-λ-Induced Transcriptional Profile in Murine Intestinal Epithelial Cells.

    Selvakumar, Tharini A; Bhushal, Sudeep; Kalinke, Ulrich; Wirth, Dagmar; Hauser, Hansjörg; Köster, Mario; Hornef, Mathias W; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
    Type I (α and β) and type III (λ) interferons (IFNs) induce the expression of a large set of antiviral effector molecules
  • Type I interferon receptor signaling delays Kupffer cell replenishment during acute fulminant viral hepatitis.

    Borst, Katharina; Frenz, Theresa; Spanier, Julia; Tegtmeyer, Pia-Katharina; Chhatbar, Chintan; Skerra, Jennifer; Ghita, Luca; Namineni, Sukumar; Lienenklaus, Stefan; Köster, Mario; Heikenwaelder, Mathias; Sutter, Gerd; Kalinke, Ulrich; TWINCORE, Zentrum für experimentelle und klinischeInfektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2017-12-21)
    Virus-induced fulminant hepatitis is a major cause of acute liver failure. During acute viral hepatitis the impact of type I interferon (IFN-I) on myeloid cells, including liver-resident Kupffer cells (KC), is only partially understood. Herein, we dissected the impact of locally induced IFN-I responses on myeloid cell function and hepatocytes during acute liver inflammation. Two different DNA-encoded viruses, vaccinia virus (VACV) and murine cytomegalovirus (MCMV), were studied. In vivo imaging was applied to visualize local IFN-β induction and IFN-I receptor (IFNAR) triggering in VACV-infected reporter mice. Furthermore, mice with a cell type-selective IFNAR ablation were analyzed to dissect the role of IFNAR signaling in myeloid cells and hepatocytes. Experiments with Cx3cr1 VACV infection induced local IFN-β responses, which lead to IFNAR signaling primarily within the liver. IFNAR triggering was needed to control the infection and prevent fulminant hepatitis. The severity of liver inflammation was independent of IFNAR triggering of hepatocytes, whereas IFNAR triggering of myeloid cells protected from excessive inflammation. Upon VACV or MCMV infection KC disappeared, whereas infiltrating monocytes differentiated to KC afterwards. During IFNAR triggering such replenished monocyte-derived KC comprised more IFNAR-deficient than -competent cells in mixed bone marrow chimeric mice, whereas after the decline of IFNAR triggering both subsets showed an even distribution. Upon VACV infection IFNAR triggering of myeloid cells, but not of hepatocytes, critically modulates acute viral hepatitis. During infection with DNA-encoded viruses IFNAR triggering of liver-infiltrating blood monocytes delays the development of monocyte-derived KC, pointing towards new therapeutic strategies for acute viral hepatitis.
  • Memory CD8 T cells support the maintenance of hematopoietic stem cells in the bone marrow

    Geerman, Sulima; Brasser, Giso; Bhushal, Sudeep; Salerno, Fiamma; Kragten, Natasja A.; Hoogenboezem, Mark; de Haan, Gerald; Wolkers, Monika C.; Pascutti, María Fernanda; Nolte, Martijn A.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
  • Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor.

    Stichling, Nicole; Suomalainen, Maarit; Flatt, Justin W; Schmid, Markus; Pacesa, Martin; Hemmi, Silvio; Jungraithmayr, Wolfgang; Maler, Mareike D; Freudenberg, Marina A; Plückthun, Andreas; May, Tobias; Köster, Mario; Fejer, György; Greber, Urs F; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03)
    Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.
  • A mathematical model of the impact of insulin secretion dynamics on selective hepatic insulin resistance.

    Zhao, Gang; Wirth, Dagmar; Schmitz, Ingo; Meyer-Hermann, Michael; Braunschweiger Zentrum für Systembiologie, Rebenring 56, 38106, Germany. (2017-11-08)
    Physiological insulin secretion exhibits various temporal patterns, the dysregulation of which is involved in diabetes development. We analyzed the impact of first-phase and pulsatile insulin release on glucose and lipid control with various hepatic insulin signaling networks. The mathematical model suggests that atypical protein kinase C (aPKC) undergoes a bistable switch-on and switch-off, under the control of insulin receptor substrate 2 (IRS2). The activation of IRS1 and IRS2 is temporally separated due to the inhibition of IRS1 by aPKC. The model further shows that the timing of aPKC switch-off is delayed by reduced first-phase insulin and reduced amplitude of insulin pulses. Based on these findings, we propose a sequential model of postprandial hepatic control of glucose and lipid by insulin, according to which delayed aPKC switch-off contributes to selective hepatic insulin resistance, which is a long-standing paradox in the field.
  • CpG-ODN Facilitates Effective Intratracheal Immunization and Recall of Memory against Neoantigen-Expressing Alveolar Cells.

    Riehn, Mathias; Cebula, Marcin; Hauser, Hansjörg; Wirth, Dagmar; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2017)
    Intrapulmonary immune reactions are impaired by the tolerogenic environment of the lung. This is manifested by the absence of effective endogenous T cell responses upon neoantigen expression. This tolerance is considered to contribute to lung cancer and inefficient immune therapeutic interventions. To investigate the mechanisms contributing to lung tolerance and to overcome these restrictions, we developed a transgenic mouse model with induction of a neoantigen (OVA) exclusively in alveolar type II epithelial cells. This model is characterized by the absence of functional endogenous T cell responses upon OVA neoantigen induction. Standard DNA and protein vaccination protocols resulted in the accumulation of high numbers of antigen-specific CD8 T cells in the lung. However, clearance of antigen-expressing cells was not achieved. To overcome this tolerance, we induced inflammatory conditions by coapplication of the TLR ligands LPS and CpG-ODN during intrapulmonary vaccinations. Both ligands induced high numbers of neoantigen-specific T cells in the lung. However, only coapplication of CpG-ODN was sufficient to establish functional cytotoxic responses resulting in the elimination of neoantigen presenting target cells. Remarkably, CpG-ODN was also crucial for functional memory responses upon re-induction of the neoantigen. The results highlight the need of TLR9 co-stimulation for overcoming tolerization, which might be a key factor for therapeutic interventions.
  • Controlled re-activation of epigenetically silenced Tet promoter-driven transgene expression by targeted demethylation.

    Gödecke, Natascha; Zha, Lisha; Spencer, Shawal; Behme, Sara; Riemer, Pamela; Rehli, Michael; Hauser, Hansjörg; Wirth, Dagmar; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, D38124 Braunschweig, Germany. (2017-09-19)
    Faithful expression of transgenes in cell cultures and mice is often challenged by locus dependent epigenetic silencing. We investigated silencing of Tet-controlled expression cassettes within the mouse ROSA26 locus. We observed pronounced DNA methylation of the Tet promoter concomitant with loss of expression in mES cells as well as in differentiated cells and transgenic animals. Strikingly, the ROSA26 promoter remains active and methylation free indicating that this silencing mechanism specifically affects the transgene, but does not spread to the host's chromosomal neighborhood. To reactivate Tet cassettes a synthetic fusion protein was constructed and expressed in silenced cells. This protein includes the enzymatic domains of ten eleven translocation methylcytosine dioxygenase 1 (TET-1) as well as the Tet repressor DNA binding domain. Expression of the synthetic fusion protein and Doxycycline treatment allowed targeted demethylation of the Tet promoter in the ROSA26 locus and in another genomic site, rescuing transgene expression in cells and transgenic mice. Thus, inducible, reversible and site-specific epigenetic modulation is a promising strategy for reactivation of silenced transgene expression, independent of the integration site.
  • TLR9-Mediated Conditioning of Liver Environment Is Essential for Successful Intrahepatic Immunotherapy and Effective Memory Recall.

    Cebula, Marcin; Riehn, Mathias; Hillebrand, Upneet; Kratzer, Ramona F; Kreppel, Florian; Koutsoumpli, Georgia; Daemen, Toos; Hauser, Hansjörg; Wirth, Dagmar; Helmholtz -Zentrum für Infektionsforschung GmbH. Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-14)
    Immune defense against hepatotropic viruses such as hepatitis B (HBV) and hepatitis C (HCV) poses a major challenge for therapeutic approaches. Intrahepatic cytotoxic CD8 T cells that are crucial for an immune response against these viruses often become exhausted resulting in chronic infection. We elucidated the T cell response upon therapeutic vaccination in inducible transgenic mouse models in which variable percentages of antigen-expressing hepatocytes can be adjusted, providing mosaic antigen distribution and reflecting the varying viral antigen loads observed in patients. Vaccination-induced endogenous CD8 T cells could eliminate low antigen loads in liver but were functionally impaired if confronted with elevated antigen loads. Strikingly, only by conditioning the liver environment with TLR9 ligand prior and early after peripheral vaccination, successful immunization against high intrahepatic antigen density with its elimination was achieved. Moreover, TLR9 immunomodulation was also indispensable for functional memory recall after high frequency antigen challenge. Together, the results indicate that TLR9-mediated conditioning of liver environment during therapeutic vaccination or antigen reoccurrence is crucial for an efficacious intrahepatic T cell response.
  • Cell Polarization and Epigenetic Status Shape the Heterogeneous Response to Type III Interferons in Intestinal Epithelial Cells.

    Bhushal, Sudeep; Wolfsmüller, Markus; Selvakumar, Tharini A; Kemper, Lucas; Wirth, Dagmar; Hornef, Mathias W; Hauser, Hansjörg; Köster, Mario; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
    Type I and type III interferons (IFNs) are crucial components of the first-line antiviral host response. While specific receptors for both IFN types exist, intracellular signaling shares the same Jak-STAT pathway. Due to its receptor expression, IFN-λ responsiveness is restricted mainly to epithelial cells. Here, we display IFN-stimulated gene induction at the single cell level to comparatively analyze the activities of both IFN types in intestinal epithelial cells and mini-gut organoids. Initially, we noticed that the response to both types of IFNs at low concentrations is based on a single cell decision-making determining the total cell intrinsic antiviral activity. We identified histone deacetylase (HDAC) activity as a crucial restriction factor controlling the cell frequency of IFN-stimulated gene (ISG) induction upon IFN-λ but not IFN-β stimulation. Consistently, HDAC blockade confers antiviral activity to an elsewise non-responding subpopulation. Second, in contrast to the type I IFN system, polarization of intestinal epithelial cells strongly enhances their ability to respond to IFN-λ signaling and raises the kinetics of gene induction. Finally, we show that ISG induction in mini-gut organoids by low amounts of IFN is characterized by a scattered heterogeneous responsiveness of the epithelial cells and HDAC activity fine-tunes exclusively IFN-λ activity. This study provides a comprehensive description of the differential response to type I and type III IFNs and demonstrates that cell polarization in gut epithelial cells specifically increases IFN-λ activity.
  • The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function.

    Kunkiel, Jessica; Gödecke, Natascha; Ackermann, Mania; Hoffmann, Dirk; Schambach, Axel; Lachmann, Nico; Wirth, Dagmar; Moritz, Thomas; Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-08-11)
    Suppression of therapeutic transgene expression from retroviral gene therapy vectors by epigenetic defence mechanisms represents a problem that is particularly encountered in pluripotent stem cells (PSCs) and their differentiated progeny. Transgene expression in these cells, however, can be stabilised by CpG-rich ubiquitous chromatin opening elements (UCOEs). In this context we recently demonstrated profound anti-silencing properties for the small (679 bp) CBX3-UCO element and we now confirmed this observation in the context of the defined murine chromosomal loci ROSA26 and TIGRE. Moreover, since the structural basis for the anti-silencing activity of UCOEs has remained poorly defined, we interrogated various CBX3 subfragments in the context of lentiviral vectors and murine PSCs. We demonstrated marked though distinct anti-silencing activity in the pluripotent state and during PSC-differentiation for several of the CBX3 subfragments. This activity was significantly correlated with CpG content as well as endogenous transcriptional activity. Interestingly, also a scrambled CBX3 version with preserved CpG-sites retained the anti-silencing activity despite the lack of endogenous promoter activity. Our data therefore highlight the importance of CpG-sites and transcriptional activity for UCOE functionality and suggest contributions from different mechanisms to the overall anti-silencing function of the CBX3 element.
  • Isolation of F. novicida-Containing Phagosome from Infected Human Monocyte Derived Macrophages.

    Marecic, Valentina; Shevchuk, Olga; Ozanic, Mateja; Mihelcic, Mirna; Steinert, Michael; Jurak Begonja, Antonija; Abu Kwaik, Yousef; Santic, Marina; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
    Francisella is a gram-negative bacterial pathogen, which causes tularemia in humans and animals. A crucial step of Francisella infection is its invasion of macrophage cells. Biogenesis of the Francisella-containing phagosome (FCP) is arrested for ~15 min at the endosomal stage, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. The crucial step in pathogenesis of tularemia is short and transient presence of the bacterium within phagosome. Isolation of FCPs for further studies has been challenging due to the short period of time of bacterial residence in it and the characteristics of the FCP. Here, we will for the first time present the method for isolation of the FCPs from infected human monocytes-derived macrophages (hMDMs). For elimination of lysosomal compartment these organelles were pre-loaded with dextran coated colloidal iron particles prior infection and eliminated by magnetic separation of the post-nuclear supernatant (PNS). We encountered the challenge that mitochondria has similar density to the FCP. To separate the FCP in the PNS from mitochondria, we utilized iodophenylnitrophenyltetrazolium, which is converted by the mitochondrial succinate dehydrogenase into formazan, leading to increased density of the mitochondria and allowing separation by the discontinuous sucrose density gradient ultracentrifugation. The purity of the FCP preparation and its acquisition of early endosomal markers was confirmed by Western blots, confocal and transmission electron microscopy. Our strategy to isolate highly pure FCPs from macrophages should facilitate studies on the FCP and its biogenesis.
  • Towards rational engineering of cells: Recombinant gene expression in defined chromosomal loci

    Nehlsen, Kristina; da Gama-Norton, Leonor; Schucht, Roland; Hauser, Hansjörg; Wirth, Dagmar (2011-11-22)
  • Effective intrahepatic CD8+ T-cell immune responses are induced by low but not high numbers of antigen-expressing hepatocytes.

    Ochel, Aaron; Cebula, Marcin; Riehn, Mathias; Hillebrand, Upneet; Lipps, Christoph; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-11)
    Liver infections with hepatotropic viruses, such as hepatitis B virus and hepatitis C virus are accompanied by viral persistence and immune failure. CD8+ T cells are crucial mediators of the intrahepatic antiviral immune response. Chronic infections of the liver and other organs correlate with T-cell exhaustion. It was previously suggested that high antigen load could result in T-cell exhaustion. We aimed at elucidating the impact of different intrahepatic antigen loads on the quality of CD8+ T-cell-mediated immunity by employing an infection-free transgenic mouse model expressing ovalbumin (Ova) as the target antigen. Adoptive transfer of OT-I cells induced a transient intrahepatic immune response toward both high and low Ova levels. However, antigen clearance was achieved only in mice expressing low antigen levels. In contrast, T cells exposed to high antigen levels underwent exhaustion and became depleted, causing antigen persistence. Moreover, when functional T cells were exposed to high intrahepatic antigen levels, a complete transition toward exhaustion was observed. Thus, this study shows that the antigen expression level in the liver correlates inversely with T-cell immunity in vivo and governs the efficiency of immune responses upon antigen presentation.
  • Caveolin-1 influences human influenza A virus (H1N1) multiplication in cell culture

    Sun, Lijing; Hemgård, Gun-Viol; Susanto, Sony A; Wirth, Manfred (2010-05-26)
    Abstract Background The threat of recurring influenza pandemics caused by new viral strains and the occurrence of escape mutants necessitate the search for potent therapeutic targets. The dependence of viruses on cellular factors provides a weak-spot in the viral multiplication strategy and a means to interfere with viral multiplication. Results Using a motif-based search strategy for antiviral targets we identified caveolin-1 (Cav-1) as a putative cellular interaction partner of human influenza A viruses, including the pandemic influenza A virus (H1N1) strains of swine origin circulating from spring 2009 on. The influence of Cav-1 on human influenza A/PR/8/34 (H1N1) virus replication was determined in inhibition and competition experiments. RNAi-mediated Cav-1 knock-down as well as transfection of a dominant-negative Cav-1 mutant results in a decrease in virus titre in infected Madin-Darby canine kidney cells (MDCK), a cell line commonly used in basic influenza research as well as in virus vaccine production. To understand the molecular basis of the phenomenon we focussed on the putative caveolin-1 binding domain (CBD) located in the lumenal, juxtamembranal portion of the M2 matrix protein which has been identified in the motif-based search. Pull-down assays and co-immunoprecipitation experiments showed that caveolin-1 binds to M2. The data suggest, that Cav-1 modulates influenza virus A replication presumably based on M2/Cav-1 interaction. Conclusion As Cav-1 is involved in the human influenza A virus life cycle, the multifunctional protein and its interaction with M2 protein of human influenza A viruses represent a promising starting point for the search for antiviral agents.
  • p120 Catenin-Mediated Stabilization of E-Cadherin Is Essential for Primitive Endoderm Specification.

    Pieters, Tim; Goossens, Steven; Haenebalcke, Lieven; Andries, Vanessa; Stryjewska, Agata; De Rycke, Riet; Lemeire, Kelly; Hochepied, Tino; Huylebroeck, Danny; Berx, Geert; Stemmler, Marc P; Wirth, Dagmar; Haigh, Jody J; van Hengel, Jolanda; van Roy, Frans; Helmholtz Centre for infection researchz, Inhoffenstr. 7, 38124 Braunschweig. (2016-08)
    E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.
  • The Role of Regulatory CD4 T Cells in Maintaining Tolerance in a Mouse Model of Autoimmune Hepatitis.

    An Haack, Ira; Derkow, Katja; Riehn, Mathias; Rentinck, Marc-Nicolas; Kühl, Anja A; Lehnardt, Seija; Schott, Eckart; Dept. of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Berlin, Germany. (2015)
    The role of regulatory CD4 T cells (Treg) in immune-mediated liver disease is still under debate. It remains disputed whether Treg suppress T cell-mediated hepatitis in vivo and whether hepatic regulatory T cells are functional in patients with autoimmune hepatitis.
  • Periostin secreted by mesenchymal stem cells supports tendon formation in an ectopic mouse model.

    Noack, Sandra; Seiffart, Virginia; Willbold, Elmar; Laggies, Sandra; Winkel, Andreas; Shahab-Osterloh, Sandra; Flörkemeier, Thilo; Hertwig, Falk; Steinhoff, Christine; Nuber, Ulrike A; Gross, Gerhard; Hoffmann, Andrea; 1 Department of Orthopaedic Trauma, Hannover Medical School (MHH), Hannover, Germany . (2014-08-15)
    True tendon regeneration in human patients remains a vision of musculoskeletal therapies. In comparison to other mesenchymal lineages the biology of tenogenic differentiation is barely understood. Specifically, easy and efficient protocols are lacking that might enable tendon cell and tissue differentiation based on adult (stem) cell sources. In the murine mesenchymal progenitor cell line C3H10T½, overexpression of the growth factor bone morphogenetic protein 2 (BMP2) and a constitutively active transcription factor, Smad8 L+MH2, mediates tendon cell differentiation in vitro and the formation of tendon-like tissue in vivo. We hypothesized that during this differentiation secreted factors involved in extracellular matrix formation exert a major impact on tendon development. Gene expression analyses revealed four genes encoding secreted factors that are notably upregulated: periostin, C-type lectin domain family 3 (member b), RNase A4, and follistatin-like 1. These factors have not previously been implicated in tendon biology. Among these, periostin showed a specific expression in tenocytes of adult mouse Achilles tendon and in chondrocytes within the nonmineralized fibrocartilage zone of the enthesis with the calcaneus. Overexpression of periostin alone or in combination with constitutively active BMP receptor type in human mesenchymal stem cells and subsequent implantation into ectopic sites in mice demonstrated a reproducible moderate tenogenic capacity that has not been described before. Therefore, periostin may belong to the factors contributing to the development of tenogenic tissue.
  • Identification of molecular sub-networks associated with cell survival in a chronically SIVmac-infected human CD4+ T cell line.

    He, Feng Q; Sauermann, Ulrike; Beer, Christiane; Winkelmann, Silke; Yu, Zheng; Sopper, Sieghart; Zeng, An-Ping; Wirth, Manfred (2014)
    The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology.
  • Uncoupling of the dynamics of host-pathogen interaction uncovers new mechanisms of viral interferon antagonism at the single-cell level.

    Rand, Ulfert; Hillebrand, Upneet; Sievers, Stephanie; Willenberg, Steffi; Köster, Mario; Hauser, Hansjörg; Wirth, Dagmar (Oxford University Press, 2014-06-03)
    Antiviral defence in mammals is mediated through type-I interferons (IFNs). Viruses antagonise this process through expression of IFN antagonist proteins (IAPs). Understanding and modelling of viral escape mechanisms and the dynamics of IAP action has the potential to facilitate the development of specific and safe drugs. Here, we describe the dynamics of interference by selected viral IAPs, NS1 from Influenza A virus and NS3/4A from Hepatitis C virus. We used Tet-inducible IAP gene expression to uncouple this process from virus-driven dynamics. Stochastic activation of the IFN-β gene required the use of single-cell live imaging to define the efficacy of the inhibitors during the virus-induced signalling processes. We found significant correlation between the onset of IAP expression and halted IFN-β expression in cells where IFN-β induction had already occurred. These data indicate that IAPs not only prevent antiviral signalling prior to IFN-β induction, but can also stop the antiviral response even after it has been activated. We found reduced NF-κB activation to be the underlying mechanism by which activated IFN expression can be blocked. This work demonstrates a new mechanism by which viruses can antagonise the IFN response.
  • An Inducible Transgenic Mouse Model for Immune Mediated Hepatitis Showing Clearance of Antigen Expressing Hepatocytes by CD8+ T Cells.

    Cebula, Marcin; Ochel, Aaron; Hillebrand, Upneet; Pils, Marina C; Schirmbeck, Reinhold; Hauser, Hansjörg; Wirth, Dagmar; Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig, Germany. (2013)
    The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2) mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b)/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2) mice or generated triple transgenic OVA_X CreER(T2)_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2) mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2)_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2)_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

View more