• Activity and composition of methanotrophic bacterial communities in planted rice soil studied by flux measurements, analyses of pmoA gene and stable isotope probing of phospholipid fatty acids.

      Shrestha, Minita; Abraham, Wolf-Rainer; Shrestha, Pravin Malla; Noll, Matthias; Conrad, Ralf; Max-Planck-Institut für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, D-35043, Marburg, Germany. (2008-02)
      Methanotrophs in the rhizosphere of rice field ecosystems attenuate the emissions of CH(4) into the atmosphere and thus play an important role for the global cycle of this greenhouse gas. Therefore, we measured the activity and composition of the methanotrophic community in the rhizosphere of rice microcosms. Methane oxidation was determined by measuring the CH(4) flux in the presence and absence of difluoromethane as a specific inhibitor for methane oxidation. Methane oxidation started on day 24 and reached the maximum on day 32 after transplantation. The total methanotrophic community was analysed by terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene, which encodes a subunit of particulate methane monooxygenase. The metabolically active methanotrophic community was analysed by stable isotope probing of microbial phospholipid fatty acids (PLFA-SIP) using (13)C-labelled CH(4) directly added to the rhizospheric region. Rhizospheric soil and root samples were collected after exposure to (13)CH(4) for 8 and 18 days. Both T-RFLP/cloning and PLFA-SIP approaches showed that type I and type II methanotrophic populations changed over time with respect to activity and population size in the rhizospheric soil and on the rice roots. However, type I methanotrophs were more active than type II methanotrophs at both time points indicating they were of particular importance in the rhizosphere. PLFA-SIP showed that the active methanotrophic populations exhibit a pronounced spatial and temporal variation in rice microcosms.
    • Spatial variation of active microbiota in the rice rhizosphere revealed by in situ stable isotope probing of phospholipid fatty acids.

      Lu, Yahai; Abraham, Wolf-Rainer; Conrad, Ralf; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, China. (2007-02)
      This report is part of a serial study applying stable isotope labelling to rice microcosms to track the utilization of recently photosynthesized carbon by active microbiota in the rhizosphere. The objective of the present study was to apply phospholipid fatty acid-based stable isotope probing (PLFA-SIP) to detect the spatial variation of active microorganisms associated with rhizosphere carbon flow. In total, 49 pulses of 13CO2 were applied to rice plants in a microcosm over a period of 7 days. Rhizosphere soil was separated from bulk soil by a root bag. Soil samples were taken from rhizosphere and bulk soil, and the bulk soil samples were further partitioned both vertically (up layer and down layer) and horizontally with increasing distance to the root bag. Incorporation of 13C into PLFAs sharply decreased with distance to the roots. The labelling of 16:1omega9, 18:1omega7, 18:1omega9, 18:2omega6,9 and i14:0 PLFAs was relatively stronger in the rhizosphere while that of i15:0 and i17:0 increased in the bulk soil. The microorganisms associated with 16:1omega9 were active in both up- and down-layer soils. The microorganisms represented by i14:0, 18:1omega7 and 18:2omega6,9 exhibited a relatively higher activity in up-layer soil, whereas those represented by i15:0 and i17:0 were more active in down-layer soil. These results suggest that in the rhizosphere Gram-negative and eukaryotic microorganisms were most actively assimilating root-derived C, whereas Gram-positive microorganisms became relatively more important in the bulk soil. The active populations apparently differed between up- and down-layer soil and in particular changed with distance to the roots, demonstrating systematic changes in the activity of the soil microbiota surrounding roots.