• Effects of drift and noise on the optimal sliding window size for data stream regression models

      Tschumitschew, Katharina; Klawonn, Frank; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124Braunschweig, Germany. (2016-05-27)
    • Relative ion intensities of maltooligosaccharide ethers in electrospray ionization ion trap mass spectrometry: A quantitative evaluation

      Gangula, Sheetal; Nimtz, Manfred; Mischnick, Petra; Technische Universität Braunschweig, Institute of Food Chemistry, Schleinitzstr. 20, Braunschweig, Germany. (2016-05)
    • The Molybdenum Active Site of Formate Dehydrogenase Is Capable of Catalyzing C-H Bond Cleavage and Oxygen Atom Transfer Reactions.

      Hartmann, Tobias; Schrapers, Peer; Utesch, Tillmann; Nimtz, Manfred; Rippers, Yvonne; Dau, Holger; Mroginski, Maria Andrea; Haumann, Michael; Leimkühler, Silke; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016-04-26)
      Formate dehydrogenases (FDHs) are capable of performing the reversible oxidation of formate and are enzymes of great interest for fuel cell applications and for the production of reduced carbon compounds as energy sources from CO2. Metal-containing FDHs in general contain a highly conserved active site, comprising a molybdenum (or tungsten) center coordinated by two molybdopterin guanine dinucleotide molecules, a sulfido and a (seleno-)cysteine ligand, in addition to a histidine and arginine residue in the second coordination sphere. So far, the role of these amino acids in catalysis has not been studied in detail, because of the lack of suitable expression systems and the lability or oxygen sensitivity of the enzymes. Here, the roles of these active site residues is revealed using the Mo-containing FDH from Rhodobacter capsulatus. Our results show that the cysteine ligand at the Mo ion is displaced by the formate substrate during the reaction, the arginine has a direct role in substrate binding and stabilization, and the histidine elevates the pKa of the active site cysteine. We further found that in addition to reversible formate oxidation, the enzyme is further capable of reducing nitrate to nitrite. We propose a mechanistic scheme that combines both functionalities and provides important insights into the distinct mechanisms of C-H bond cleavage and oxygen atom transfer catalyzed by formate dehydrogenase.
    • Diagnostic support for selected neuromuscular diseases using answer-pattern recognition and data mining techniques: a proof of concept multicenter prospective trial.

      Grigull, Lorenz; Lechner, Werner; Petri, Susanne; Kollewe, Katja; Dengler, Reinhard; Mehmecke, Sandra; Schumacher, Ulrike; Lücke, Thomas; Schneider-Gold, Christiane; Köhler, Cornelia; Güttsches, Anne-Katrin; Kortum, Xiaowei; Klawonn, Frank; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Diagnosis of neuromuscular diseases in primary care is often challenging. Rare diseases such as Pompe disease are easily overlooked by the general practitioner. We therefore aimed to develop a diagnostic support tool using patient-oriented questions and combined data mining algorithms recognizing answer patterns in individuals with selected neuromuscular diseases. A multicenter prospective study for the proof of concept was conducted thereafter.
    • Analysis of Practical Identifiability of a Viral Infection Model.

      Nguyen, Van Kinh; Klawonn, Frank; Mikolajczyk, Rafael; Hernandez-Vargas, Esteban A.; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.
    • Fuzzy clustering: More than just fuzzification

      Klawonn, Frank; Kruse, Rudolf; Winkler, Roland; Helmholtz Centre for infection research, Inhoffenstr. 7, D-38124 Braunschweig, Germany. (2015-12)
    • Assessment of cross-species transmission of hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of exposure.

      Pfaender, Stephanie; Walter, Stephanie; Todt, Daniel; Behrendt, Patrick; Doerrbecker, Juliane; Wölk, Benno; Engelmann, Michael; Gravemann, Ute; Seltsam, Axel; Steinmann, Joerg; Burbelo, Peter D; Klawonn, Frank; Feige, Karsten; Pietschmann, Thomas; Cavalleri, Jessika-M V; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2015-09)
      The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.
    • LC/MS Based Monitoring of Endogenous Decay Markers for Quality Assessment of Serum Specimens

      Thumfart, Jörg Oliver; Abidi, Nada; Mindt, Sonani; Costani, Victor; Hofheinz, Ralf; Klawonn, Frank; Findeisen, Peter; 1Institute for Clinical Chemistry, Medical Faculty Mannheim of the University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany (2015-05-04)
      Preanalytical variations have major impact on most biological assays. Specifically MS-based multiparametric proteomics analyses of blood specimens are seriously affected by limited protein stability due to high intrinsic proteolytic activity of serum and plasma. However, the direct analysis of sample quality (DASQ) for serum specimens is not readily available. Here we propose the mass spectrometry based monitoring of peptide patterns that are ex vivo changing in a time dependent manner to alleviate these constrains.
    • Diagnostic Support for Selected Paediatric Pulmonary Diseases Using Answer-Pattern Recognition in Questionnaires Based on Combined Data Mining Applications--A Monocentric Observational Pilot Study.

      Rother, Ann-Katrin; Schwerk, Nicolaus; Brinkmann, Folke; Klawonn, Frank; Lechner, Werner; Grigull, Lorenz; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Clinical symptoms in children with pulmonary diseases are frequently non-specific. Rare diseases such as primary ciliary dyskinesia (PCD), cystic fibrosis (CF) or protracted bacterial bronchitis (PBB) can be easily missed at the general practitioner (GP).
    • Lipopolysaccharide binding protein, interleukin-10, interleukin-6 and C-reactive protein blood levels in acute ischemic stroke patients with post-stroke infection.

      Worthmann, Hans; Tryc, Anita B; Dirks, Meike; Schuppner, Ramona; Brand, Korbinian; Klawonn, Frank; Lichtinghagen, Ralf; Weissenborn, Karin; Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30623, Hannover, Germany. (2015)
      Ischemic stroke patients are prone to infection by stroke-induced immunodepression. We hypothesized that levels of lipopolysaccharide binding protein (LBP), interleukin-10 (IL-10), IL-6 and C-reactive protein (CRP) are early predictors for the development of stroke-associated infection.
    • Hematological parameters in the early phase of influenza A virus infection in differentially susceptible inbred mouse strains.

      Preusse, Matthias; Schughart, Klaus; Wilk, Esther; Klawonn, Frank; Pessler, Frank; Helmholz Centre for Infection Research (2015)
      Hematological parameters have not received much attention in small animal models of infection, particularly at very early time points. We therefore studied changes in leukocyte and thrombocyte numbers in a mouse model of influenza A virus (IAV) infection, including measurements within the first 24 h after infection, and also assessing effects, if any, of the infection/anesthesia procedure on these parameters.
    • Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection.

      Shevchuk, Olga; Pägelow, Dennis; Rasch, Janine; Döhrmann, Simon; Günther, Gabriele; Hoppe, Julia; Ünal, Can Murat; Bronietzki, Marc; Gutierrez, Maximiliano Gabriel; Steinert, Michael; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2014-11)
      L. pneumophila-containing vacuoles (LCVs) exclude endocytic and lysosomal markers in human macrophages and protozoa. We screened a L. pneumophila mini-Tn10 transposon library for mutants, which fail to inhibit the fusion of LCVs with lysosomes by loading of the lysosomal compartment with colloidal iron dextran, mechanical lysis of infected host cells, and magnetic isolation of LCVs that have fused with lysosomes. In silico analysis of the mutated genes, D. discoideum plaque assays and infection assays in protozoa and U937 macrophage-like cells identified well established as well as novel putative L. pneumophila virulence factors. Promising candidates were further analyzed for their co-localization with lysosomes in host cells using fluorescence microscopy. This approach corroborated that the O-methyltransferase, PilY1, TPR-containing protein and polyketide synthase (PKS) of L. pneumophila interfere with lysosomal degradation. Competitive infections in protozoa and macrophages revealed that the identified PKS contributes to the biological fitness of pneumophila strains and may explain their prevalence in the epidemiology of Legionnaires' disease.
    • Infection- and procedure-dependent effects on pulmonary gene expression in the early phase of influenza A virus infection in mice

      Preusse, Matthias; Tantawy, Mohamed A; Klawonn, Frank; Schughart, Klaus; Pessler, Frank (2013-12-17)
      Abstract Background Investigating the host response in the early stage of influenza A virus (IAV) infection is of considerable interest. However, it is conceivable that effects due to the anesthesia and/or intranasal infection procedure might introduce artifacts. We therefore aimed to evaluate the effects of anesthesia and/or intranasal infection on transcription of selected pulmonary mRNAs in two inbred mouse strains with differential susceptibility to IAV infection. Results DBA/2J and C57BL/6J mice were evaluated in a time course experiment in which lung tissue was sampled after 6, 12, 18, 24, 48 and 120 h. After anesthesia with ketamine and xylazine, a suspension of mouse-adapted IAV strain PR8_Mun in 20 μl sterile buffer, or 20 μl sterile buffer only, was instilled intranasally. The mice receiving anesthesia and PBS only were designated the “mock treatment” group. Pulmonary expression of 10 host mRNAs (Fos, Retnla, Irg1, Il6, Il1b, Cxcl10, Stat1, Ifng, Ifnl2, and Mx1) and viral hemagglutinin (HA) mRNA were determined at the designated time points. As expected, weight loss and viral replication were greater in the DBA/2J strain (which is more susceptible to IAV infection). Four mRNAs (Retnla, Irg1, Il6, and Cxcl10) were procedure-dependently regulated in DBA/2J mice between 6 and 24 h, and two (Retnla and Il6) in C57BL/6J mice, although to a lesser extent. All 10 mRNAs rose after infection, but one (Fos) only in DBA/2J mice. These infection-dependent effects could be separated from procedure-dependent effects beginning around 12 h in DBA/2J and 18 h in C57BL/6J mice. The interferon-related mRNAs Stat1, Ifng, Infl2, and Mx1 were unaffected by mock treatment in either mouse strain. Mx1 and Infl2 correlated best with HA mRNA expression (r = 0.97 and 0.93, respectively, in DBA/2J). Conclusions These results demonstrate effects of the anesthesia and/or intranasal infection procedure on pulmonary gene expression, which are detectable between approximately 6 and 24 h post procedure and vary in intensity and temporal evolution depending on the mouse strain used. Mock infection controls should be included in all studies on pulmonary gene expression in the early phase of infection with IAV and, likely, other respiratory pathogens.
    • Peptidases released by necrotic cells control CD8+ T cell cross-priming.

      Gamrekelashvili, Jaba; Kapanadze, Tamar; Han, Miaojun; Wissing, Josef; Ma, Chi; Jaensch, Lothar; Manns, Michael P; Armstrong, Todd; Jaffee, Elizabeth; White, Ayla O; Citrin, Deborah E; Korangy, Firouzeh; Greten, Tim F (2013-10-08)
      Cross-priming of CD8+ T cells and generation of effector immune responses is pivotal for tumor immunity as well as for successful anticancer vaccination and therapy. Dead and dying cells produce signals that can influence Ag processing and presentation; however, there is conflicting evidence regarding the immunogenicity of necrotic cell death. We used a mouse model of sterile necrosis, in which mice were injected with sterile primary necrotic cells, to investigate a role of these cells in priming of CD8+ T cells. We discovered a molecular mechanism operating in Ag donor cells that regulates cross-priming of CD8+ T cells during primary sterile necrosis and thereby controls adaptive immune responses. We found that the cellular peptidases dipeptidyl peptidase 3 (DPP-3) and thimet oligopeptidase 1 (TOP-1), both of which are present in nonimmunogenic necrotic cells, eliminated proteasomal degradation products and blocked Ag cross-presentation. While sterile necrotic tumor cells failed to induce CD8+ T cell responses, their nonimmunogenicity could be reversed in vitro and in vivo by inactivation of DPP-3 and TOP-1. These results indicate that control of cross-priming and thereby immunogenicity of primary sterile necrosis relies on proteasome-dependent oligopeptide generation and functional status of peptidases in Ag donor cells.
    • Testing noisy numerical data for monotonic association

      Bodenhofer, Ulrich; Krone, Martin; Klawonn, Frank (2013-08-21)
    • Proteome analysis of distinct developmental stages of human natural killer (NK) cells.

      Scheiter, Maxi; Lau, Ulrike; van Ham, Marco; Bulitta, Björn; Gröbe, Lothar; Garritsen, Henk; Klawonn, Frank; König, Sebastian; Jänsch, Lothar; Research Group Cellular Proteomics, Helmholtz Centre for Infection Research, HZI, Inhoffenstraβe 7, D-38124 Braunschweig, Germany. (2013-05)
      The recent Natural Killer (NK) cell maturation model postulates that CD34(+) hematopoietic stem cells (HSC) first develop into CD56(bright) NK cells, then into CD56(dim)CD57(-) and finally into terminally maturated CD56(dim)CD57(+). The molecular mechanisms of human NK cell differentiation and maturation however are incompletely characterized. Here we present a proteome analysis of distinct developmental stages of human primary NK cells, isolated from healthy human blood donors. Peptide sequencing was used to comparatively analyze CD56(bright) NK cells versus CD56(dim) NK cells and CD56(dim)CD57(-) NK cells versus CD56(dim)CD57(+) NK cells and revealed distinct protein signatures for all of these subsets. Quantitative data for about 3400 proteins were obtained and support the current differentiation model. Furthermore, 11 donor-independently, but developmental stage specifically regulated proteins so far undescribed in NK cells were revealed, which may contribute to NK cell development and may elucidate a molecular source for NK cell effector functions. Among those proteins, S100A4 (Calvasculin) and S100A6 (Calcyclin) were selected to study their dynamic subcellular localization. Upon activation of human primary NK cells, both proteins are recruited into the immune synapse (NKIS), where they colocalize with myosin IIa.
    • Case-Centred Multidimensional Scaling for Classification Visualisation in Medical Diagnosis

      Klawonn, Frank; Lechner, Werner M.; Grigull, Lorenz; Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany (2013-03)
    • The sulfur carrier protein TusA has a pleiotropic role in Escherichia coli that also affects molybdenum cofactor biosynthesis.

      Dahl, Jan-Ulrik; Radon, Christin; Bühning, Martin; Nimtz, Manfred; Leichert, Lars I; Denis, Yann; Jourlin-Castelli, Cécile; Iobbi-Nivol, Chantal; Méjean, Vincent; Leimkühler, Silke; Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam, 14476 Potsdam, Germany. (2013-02-22)
      The Escherichia coli L-cysteine desulfurase IscS mobilizes sulfur from L-cysteine for the synthesis of several biomolecules such as iron-sulfur (FeS) clusters, molybdopterin, thiamin, lipoic acid, biotin, and the thiolation of tRNAs. The sulfur transfer from IscS to various biomolecules is mediated by different interaction partners (e.g. TusA for thiomodification of tRNAs, IscU for FeS cluster biogenesis, and ThiI for thiamine biosynthesis/tRNA thiolation), which bind at different sites of IscS. Transcriptomic and proteomic studies of a ΔtusA strain showed that the expression of genes of the moaABCDE operon coding for proteins involved in molybdenum cofactor biosynthesis is increased under aerobic and anaerobic conditions. Additionally, under anaerobic conditions the expression of genes encoding hydrogenase 3 and several molybdoenzymes such as nitrate reductase were also increased. On the contrary, the activity of all molydoenzymes analyzed was significantly reduced in the ΔtusA mutant. Characterization of the ΔtusA strain under aerobic conditions showed an overall low molybdopterin content and an accumulation of cyclic pyranopterin monophosphate. Under anaerobic conditions the activity of nitrate reductase was reduced by only 50%, showing that TusA is not essential for molybdenum cofactor biosynthesis. We present a model in which we propose that the direction of sulfur transfer for each sulfur-containing biomolecule is regulated by the availability of the interaction partner of IscS. We propose that in the absence of TusA, more IscS is available for FeS cluster biosynthesis and that the overproduction of FeS clusters leads to a modified expression of several genes.
    • Protein Kinase Inhibitors CK59 and CID755673 Alter Primary Human NK Cell Effector Functions.

      Scheiter, Maxi; Bulitta, Björn; van Ham, Marco; Klawonn, Frank; König, Sebastian; Jänsch, Lothar; Research Group Cellular Proteomics, Helmholtz Centre for Infection Research Braunschweig, Germany. (2013)
      Natural killer (NK) cells are part of the innate immune response and play a crucial role in the defense against tumors and virus-infected cells. Their effector functions include the specific killing of target cells, as well as the modulation of other immune cells by cytokine release. Kinases constitute a relevant part in signaling, are prime targets in drug research and the protein kinase inhibitor Dasatinib is already used for immune-modulatory therapies. In this study, we tested the effects of the kinase inhibitors CK59 and CID755673. These inhibitors are directed against calmodulin kinase II (CaMKII; CK59) and PKD family kinases (CID755673) that were previously suggested as novel components of NK activation pathways. Here, we use a multi-parameter, FACS-based assay to validate the influence of CK59 and CID755673 on the effector functions of primary NK cells. Treatment with CK59 and CID755673 indeed resulted in a significant dose-dependent reduction of NK cell degranulation markers and cytokine release in freshly isolated Peripheral blood mononuclear cell populations from healthy blood donors. These results underline the importance of CaMKII for NK cell signaling and suggest protein kinase D2 as a novel signaling component in NK cell activation. Notably, kinase inhibition studies on pure NK cell populations indicate significant donor variations.
    • Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF.

      Nicke, Tristan; Schnitzer, Tobias; Münch, Karin; Adamczack, Julia; Haufschildt, Kristin; Buchmeier, Sabine; Kucklick, Martin; Felgenträger, Undine; Jänsch, Lothar; Riedel, Katharina; Layer, Gunhild; *Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany. (2013)
      The periplasmic cytochrome cd1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d1. Whereas the haem c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d1 insertion protein NirN in vivo. This NirS-NirN interaction is dependent on the presence of the putative haem d1 biosynthesis enzyme NirF. Further, we show by affinity co-purification that NirS also directly interacts with NirF. Additionally, NirF is shown to be a membrane anchored lipoprotein in P. aeruginosa. Finally, the analysis by UV-visible absorption spectroscopy of the periplasmic protein fractions prepared from the P. aeruginosa WT (wild-type) and a P. aeruginosa ΔnirN mutant shows that the cofactor content of NirS is altered in the absence of NirN. Based on our results, we propose a potential model for the maturation of NirS in which the three proteins NirS, NirN and NirF form a transient, membrane-associated complex in order to achieve the last step of haem d1 biosynthesis and insertion of the cofactor into NirS.