• The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes.

      Thedieck, Kathrin; Hain, Torsten; Mohamed, Walid; Tindall, Brian J; Nimtz, Manfred; Chakraborty, Trinad; Wehland, Jürgen; Jänsch, Lothar; Helmholtz Centre for Infection Research, Division of Cell and Immune Biology, Cellular Proteomics Group, Inhoffenstrasse 7, D-38124 Braunschweig, Germany. (2006-12)
      Pathogenic bacteria have to cope with defence mechanisms mediated by adaptive and innate immunity of the host cells. Cationic antimicrobial peptides (CAMPs) represent one of the most effective components of the host innate immune response. Here we establish the function of Lmo1695, a member of the VirR-dependent virulence regulon, recently identified in Listeria monocytogenes. Lmo1695 encodes a membrane protein of 98 kDa with strong homology to the multiple peptide resistance factor (MprF) of Staphylococcus aureus. Like staphylococcal MprF, we found that Lmo1695 is involved in the synthesis of the membrane phospholipid lysylphosphatidylglycerol (L-PG). In addition, Lmo1695 is also essential for lysinylation of diphosphatidylglycerol (DPG), another phospholipid widely distributed in bacterial membranes. A Deltalmo1695 mutant lacking the lysinylated phospholipids was particularly susceptible to CAMPs of human and bacterial origin. The mutant strain infected both epithelial cells and macrophages only poorly and was attenuated for virulence when tested in a mouse model of infection. Lmo1695 is a member of a growing list of survival factors which enable growth of L. monocytogenes in different environments.
    • Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of L-arabinose as inducer of bacterial gene expression in vivo.

      Loessner, Holger; Endmann, Anne; Leschner, Sara; Westphal, Kathrin; Rohde, Manfred; Miloud, Tewfik; Hämmerling, Günter; Neuhaus, Klaus; Weiss, Siegfried; Molecular Immunology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany. holger.loessner@helmholtz-hzi.de (2007-06)
      We have used Salmonella enterica serovar Typhimurium (S. typhimurium) which are able to colonize tumours besides spleen and liver. Bacteria were equipped with constructs encoding green fluorescent protein or luciferase as reporters under control of the promoter PBAD that is inducible with L-arabinose. Reporter genes could be induced in culture but also when the bacteria resided within the mouse macrophages J774A.1. More important, strong expression of reporters by the bacteria could be detected in mice after administration of L-arabinose. This was especially pronounced in bacteria colonizing tumours. Histology demonstrated that the bacteria had accumulated in and close to necrotic areas of tumours. Bacterial gene induction was observed in both regions. PBAD is tightly controlled also in vivo because gene E of bacteriophage PhiX174 could be introduced as inducible suicide gene. The possibility to deliberately induce genes in bacterial carriers within the host should render them extremely powerful tools for tumour therapy.