• Analysis of Practical Identifiability of a Viral Infection Model.

      Nguyen, Van Kinh; Klawonn, Frank; Mikolajczyk, Rafael; Hernandez-Vargas, Esteban A.; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Mathematical modelling approaches have granted a significant contribution to life sciences and beyond to understand experimental results. However, incomplete and inadequate assessments in parameter estimation practices hamper the parameter reliability, and consequently the insights that ultimately could arise from a mathematical model. To keep the diligent works in modelling biological systems from being mistrusted, potential sources of error must be acknowledged. Employing a popular mathematical model in viral infection research, existing means and practices in parameter estimation are exemplified. Numerical results show that poor experimental data is a main source that can lead to erroneous parameter estimates despite the use of innovative parameter estimation algorithms. Arbitrary choices of initial conditions as well as data asynchrony distort the parameter estimates but are often overlooked in modelling studies. This work stresses the existence of several sources of error buried in reports of modelling biological systems, voicing the need for assessing the sources of error, consolidating efforts in solving the immediate difficulties, and possibly reconsidering the use of mathematical modelling to quantify experimental data.
    • Assessment of cross-species transmission of hepatitis C virus-related non-primate hepacivirus in a population of humans at high risk of exposure.

      Pfaender, Stephanie; Walter, Stephanie; Todt, Daniel; Behrendt, Patrick; Doerrbecker, Juliane; Wölk, Benno; Engelmann, Michael; Gravemann, Ute; Seltsam, Axel; Steinmann, Joerg; Burbelo, Peter D; Klawonn, Frank; Feige, Karsten; Pietschmann, Thomas; Cavalleri, Jessika-M V; Steinmann, Eike; TWINCORE, Zentrum für experimentelle und klinische Infektionsforschung GmbH, Feodor-Lynen-Str. 7, 30625 Hannover, Germany. (2015-09)
      The recent discovery of hepatitis C virus (HCV)-related viruses in different animal species has raised new speculations regarding the origin of HCV and the possibility of a zoonotic source responsible for the endemic HCV transmission. As a consequence, these new findings prompt questions regarding the potential for cross-species transmissions of hepaciviruses. The closest relatives to HCV discovered to date are the non-primate hepaciviruses (NPHVs), which have been described to infect horses. To evaluate the risk of a potential zoonotic transmission, we analysed NPHV RNA and antibodies in humans with occupational exposure to horses in comparison with a low-risk group. Both groups were negative for NPHV RNA, even though low seroreactivities against various NPHV antigens could be detected irrespective of the group. In conclusion, we did not observe evidence of NPHV transmission between horses and humans.
    • Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants.

      Sunderhaus, Stephanie; Dudkina, Natalya V; Jänsch, Lothar; Klodmann, Jennifer; Heinemeyer, Jesco; Perales, Mariano; Zabaleta, Eduardo; Boekema, Egbert J; Braun, Hans-Peter; Institut für Angewandte Genetik, Universität Hannover, Herrenhäuser Strasse 2, D-30419 Hannover, Germany. (2006-03-10)
      Complex I of Arabidopsis includes five structurally related subunits representing gamma-type carbonic anhydrases termed CA1, CA2, CA3, CAL1, and CAL2. The position of these subunits within complex I was investigated. Direct analysis of isolated subcomplexes of complex I by liquid chromatography linked to tandem mass spectrometry allowed the assignment of the CA subunits to the membrane arm of complex I. Carbonate extraction experiments revealed that CA2 is an integral membrane protein that is protected upon protease treatment of isolated mitoplasts, indicating a location on the matrix-exposed side of the complex. A structural characterization by single particle electron microscopy of complex I from the green alga Polytomella and a previous analysis from Arabidopsis indicate a plant-specific spherical extra-domain of about 60 A in diameter, which is attached to the central part of the membrane arm of complex I on its matrix face. This spherical domain is proposed to contain a heterotrimer of three CA subunits, which are anchored with their C termini to the hydrophobic arm of complex I. Functional implications of the complex I-integrated CA subunits are discussed.
    • Case-Centred Multidimensional Scaling for Classification Visualisation in Medical Diagnosis

      Klawonn, Frank; Lechner, Werner M.; Grigull, Lorenz; Bioinformatics and Statistics, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany (2013-03)
    • Chronic lung inflammation primes humoral immunity and augments antipneumococcal resistance.

      Boehme, Julia D; Stegemann-Koniszewski, Sabine; Autengruber, Andrea; Peters, Nicole; Wissing, Josef; Jänsch, Lothar; Jeron, Andreas; Bruder, Dunja; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-07-10)
      Airway epithelial cells (AECs) display remarkable plasticity in response to infectious stimuli and their functional adaptations are critical for antimicrobial immunity. However, the roles of AECs and humoral mediators to host defense in non-communicable lung inflammation remain elusive. We dissected pulmonary defense against Streptococcus pneumoniae in hosts with pre-existing inflammatory conditions (SPC-HAxTCR-HA mice). Lung tissue transcriptomics and bronchoalveolar lavage fluid (BALF) proteomics revealed an induction of humoral defense mechanisms in inflamed lungs. Accordingly, besides antibacterial proteins and complement components being overrepresented in inflamed lungs, elevated polymeric immunoglobulin receptor (pIgR)-expression in AECs correlated with increased secretory immunoglobulin (SIg) transport. Consequently, opsonization assays revealed augmented pneumococcal coverage by SIgs present in the BALF of SPC-HAxTCR-HA mice, which was associated with enhanced antipneumococcal resistance. These findings emphasize the immunologic potential of AECs as well as their central role in providing antibacterial protection and put forward pIgR as potential target for therapeutic manipulation in infection-prone individuals.
    • Chronic Toxoplasma infection is associated with distinct alterations in the synaptic protein composition.

      Lang, Daniel; Schott, Björn H; van Ham, Marco; Morton, Lorena; Kulikovskaja, Leonora; Herrera-Molina, Rodrigo; Pielot, Rainer; Klawonn, Frank; Montag, Dirk; Jänsch, Lothar; Gundelfinger, Eckart D; Smalla, Karl Heinz; Dunay, Ildiko Rita; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-08-01)
      Chronic infection with the neurotropic parasite Toxoplasma gondii has been implicated in the risk for several neuropsychiatric disorders. The mechanisms, by which the parasite may alter neural function and behavior of the host, are not yet understood completely. Here, a novel proteomic approach using mass spectrometry was employed to investigate the alterations in synaptic protein composition in a murine model of chronic toxoplasmosis. In a candidate-based strategy, immunoblot analysis and immunohistochemistry were applied to investigate the expression levels of key synaptic proteins in glutamatergic signaling. A comparison of the synaptosomal protein composition revealed distinct changes upon infection, with multiple proteins such as EAAT2, Shank3, AMPA receptor, and NMDA receptor subunits being downregulated, whereas inflammation-related proteins showed an upregulation. Treatment with the antiparasitic agent sulfadiazine strongly reduced tachyzoite levels and diminished neuroinflammatory mediators. However, in both conditions, a significant number of latent cysts persisted in the brain. Conversely, infection-related alterations of key synaptic protein levels could be partly reversed by the treatment. These results provide evidence for profound changes especially in synaptic protein composition in T. gondii-infected mice with a downregulation of pivotal components of glutamatergic neurotransmission. Our results suggest that the detected synaptic alterations are a consequence of the distinct neuroinflammatory milieu caused by the neurotropic parasite.
    • Collection and analysis of salivary proteins from the biting midge Culicoides nubeculosus (Diptera: Ceratopogonidae).

      Langner, Kathrin F A; Darpel, Karin E; Denison, Eric; Drolet, Barbara S; Leibold, Wolfgang; Mellor, Philip S; Mertens, Peter P C; Nimtz, Manfred; Greiser-Wilke, Irene; USDA-ARS, Arthropod-Borne Animal Diseases Research Laboratory, 1000 E. University Ave., Laramie, WY 82071, USA. klangner@uwyo.edu (2007-03)
      Salivary proteins of hematophagous Culicoides spp. are thought to play an important role in pathogen transmission and skin hypersensitivity. Analysis of these proteins, however, has been problematic due to the difficulty in obtaining adequate amounts of secreted Culicoides saliva. In the current study, a collection method for midge saliva was developed. Over a 3-d period, 3- to 5-d-old male and female Culicoides nubeculosus Meigen (Diptera: Ceratopogonidae) were repeatedly placed onto the collection system and allowed to deposit saliva into a filter. Salivary products were eluted from the filters and evaluated by gel electrophoresis and mass spectrometry as well as by intradermal testing and determination of clotting time. Gel electrophoresis revealed approximately 55 protein spots displaying relative molecular masses from 5 to 67 kDa and isoelectric points ranging from 4.5 to 9.8. The majority of molecular species analyzed by mass spectrometry showed high convergence with salivary proteins recently obtained from a cDNA library of Culicoides sonorensis Wirth & Jones, including proteins involved in sugarmeal digestion, defense, and coagulation inhibition as well as members of the D7 family and unclassified salivary proteins. In addition, the proteome analysis revealed a number of peptides that were related to proteins from insect species other than Culicoides. Intradermal injection of the saliva in human skin produced edema, vasodilatation, and pruritus. The anticoagulant activity of the saliva was demonstrated by significantly prolonged clotting times for human platelets. The potential role of the identified salivary proteins in the transmission of pathogens and the induction of allergies is discussed.
    • Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

      Hain, Torsten; Ghai, Rohit; Billion, André; Kuenne, Carsten T; Steinweg, Christiane; Izar, Benjamin; Mohamed, Walid; Mraheil, Mobarak A; Domann, Eugen; Schaffrath, Silke; Kärst, Uwe; Goesmann, Alexander; Oehm, Sebastian; Pühler, Alfred; Merkl, Rainer; Vorwerk, Sonja; Glaser, Philippe; Garrido, Patricia; Rusniok, Christophe; Buchrieser, Carmen; Goebel, Werner; Chakraborty, Trinad (2012-04-24)
      Abstract Background Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. Results The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. Conclusion Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages.
    • Degradable magnesium implant-associated infections by bacterial biofilms induce robust localized and systemic inflammatory reactions in a mouse model.

      Rahim, Muhammad Imran; Babbar, Anshu; Lienenklaus, Stefan; Pils, Marina; Rohde, M; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-06-01)
      Biomaterial-associated Pseudomonas aeruginosa biofilm infections constitute cascade of host immune reactions ultimately leading towards implant failure. Due to lack of relevant in vivo biofilm models, majority of the studies report host immune responses against free living or planktonic bacteria while bacteria in clinical situations live more frequently as biofilm communities than as single cells. Present study investigated host immune responses against biomaterial-associated P. aeruginosa biofilms in a clinically relevant mouse model. Previously, we reported metallic magnesium, a prospective biodegradable implant, to be permissive for bacterial biofilms in vivo even though it exhibits antibacterial properties in vitro. Therefore, magnesium was employed as biomaterial to investigate in vivo biofilm formation and associated host immune responses by using two P. aeruginosa strains and two mouse strains. P. aeruginosa formed biofilms on subcutaneously implanted magnesium discs. Non-invasive in vivo imaging indicated transient inflammatory responses at control sites whereas robust prolonged interferon-β (IFN-β) expression was observed from biofilms in a transgenic animal reporter. Further, immunohistology and electron microscopic results showed that bacterial biofilms were located in two dimensions immediately on the implant surface and at a short distance in the adjacent tissue. These biofilms were surrounded by inflammatory cells (mainly polymorphonuclear cells) as compared to controls. Interestingly, even though the number of live bacteria in various organs remained below detectable levels, splenomegaly indicated systemic inflammatory processes. Overall, these findings confirmed the resistance of biofilm infections in vivo to potentially antibacterial properties of magnesium degradation products. In vivo imaging and histology indicated the induction of both, local and systemic host inflammatory responses against P. aeruginosa biofilms. Even though the innate host immune defenses could not eliminate the local infection for up to two weeks, there was no apparent systemic bacteremia and all animals investigated survived the infection.
    • Der zlog-Wert als Basis für die Standardisierung von Laborwerten

      Hoffmann, Georg; Klawonn, Frank; Lichtinghagen, Ralf; Orth, Matthias; Helmholtz-Zentrum für Infektionsforshung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
      Zusammenfassung Hintergrund Im Zuge des deutschen E-Health-Gesetzes von 2016 wurde die DGKL aufgefordert, Vorschläge für die standardisierte Speicherung und Übermittlung von Labordaten zu erarbeiten. Wir schlagen dafür die in der Statistik weit verbreitete z-Transformation vor. Methoden Man erhält mit diesem Verfahren einen Relativwert, der angibt, um wie viele Standardabweichungen ein Messwert vom Mittelwert des Referenzkollektivs abweicht. Anhand realer Daten belegen wir die Annahme, dass die Werte gesunder Referenzpersonen durch logarithmische Transformation einer Normalverteilung angenähert werden können. Ergebnisse Kennt man somit die Unter- und Obergrenze UG und OG des Referenzintervalls, so kann man jedes Laborergebnis mit folgender Gleichung transformieren: Der zlog-Wert ist leicht interpretierbar: Sein Referenzintervall liegt methodenunabhängig stets zwischen –1,96 und +1,96; stark erniedrigte oder erhöhte Laborergebnisse führen zu zlog-Werten um –5 bzw. +5. Für eine intuitive Befunddarstellung kann man zlog-Werte auch in eine kontinuierliche Farbskala, z. B. von Blau über Weiß bis Orange umrechnen. Mithilfe der Umkehrfunktion lässt sich aus dem zlog-Wert auch das theoretische Resultat einer Messmethode mit einem anderen Referenzintervall berechnen: Schlussfolgerung Unser Standardisierungsvorschlag ist ein leicht realisierbarer und effektiver Beitrag zur Verbesserung der Datenqualität und Patientensicherheit im Rahmen des E-Health-Gesetzes. Es wird gefordert, dass alle Labore künftig zusätzlich zum Originalwert den zlog-Wert zur Verfügung stellen und dass in die Protokolle für die elektronische Labordatenübertragung (HL7, LDT) ein eigenes Feld für diesen zusätzlichen Wert eingefügt wird.
    • Diacylglycerol Kinase from Suspension Cultured Plant Cells 1

      Wissing, Josef; Heim, Sabina; Wagner, Karl G. (1989-08)
    • Diacylglycerol Kinase from Suspension Cultured Plant Cells 1

      Wissing, Josef B.; Wagner, Karl G. (1992-03)
    • Diagnostic needs for rare diseases and shared prediagnostic phenomena: Results of a German-wide expert Delphi survey.

      Blöß, Susanne; Klemann, Christian; Rother, Ann-Katrin; Mehmecke, Sandra; Schumacher, Ulrike; Mücke, Urs; Mücke, Martin; Stieber, Christiane; Klawonn, Frank; Kortum, Xiaowei; Lechner, Werner; Grigull, Lorenz; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017)
      Worldwide approximately 7,000 rare diseases have been identified. Accordingly, 4 million individuals live with a rare disease in Germany. The mean time to diagnosis is about 6 years and patients receive several incorrect diagnoses during this time. A multiplicity of factors renders diagnosing a rare disease extremely difficult. Detection of shared phenomena among individuals with different rare diseases could assist the diagnostic process. In order to explore the demand for diagnostic support and to obtain the commonalities among patients, a nationwide Delphi survey of centers for rare diseases and patient groups was conducted.
    • Diagnostic support for selected neuromuscular diseases using answer-pattern recognition and data mining techniques: a proof of concept multicenter prospective trial.

      Grigull, Lorenz; Lechner, Werner; Petri, Susanne; Kollewe, Katja; Dengler, Reinhard; Mehmecke, Sandra; Schumacher, Ulrike; Lücke, Thomas; Schneider-Gold, Christiane; Köhler, Cornelia; Güttsches, Anne-Katrin; Kortum, Xiaowei; Klawonn, Frank; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
      Diagnosis of neuromuscular diseases in primary care is often challenging. Rare diseases such as Pompe disease are easily overlooked by the general practitioner. We therefore aimed to develop a diagnostic support tool using patient-oriented questions and combined data mining algorithms recognizing answer patterns in individuals with selected neuromuscular diseases. A multicenter prospective study for the proof of concept was conducted thereafter.
    • Diagnostic Support for Selected Paediatric Pulmonary Diseases Using Answer-Pattern Recognition in Questionnaires Based on Combined Data Mining Applications--A Monocentric Observational Pilot Study.

      Rother, Ann-Katrin; Schwerk, Nicolaus; Brinkmann, Folke; Klawonn, Frank; Lechner, Werner; Grigull, Lorenz; Helmholtz Centre for infection research, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2015)
      Clinical symptoms in children with pulmonary diseases are frequently non-specific. Rare diseases such as primary ciliary dyskinesia (PCD), cystic fibrosis (CF) or protracted bacterial bronchitis (PBB) can be easily missed at the general practitioner (GP).
    • Effects of drift and noise on the optimal sliding window size for data stream regression models

      Tschumitschew, Katharina; Klawonn, Frank; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124Braunschweig, Germany. (2016-05-27)
    • Effects of pathogen dependency in a multi-pathogen infectious disease system including population level heterogeneity - a simulation study.

      Bakuli, Abhishek; Klawonn, Frank; Karch, André; Mikolajczyk, Rafael T; Helmholtz-Zentrum für Infektionsforschung, GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-13)
      Increased computational resources have made individual based models popular for modelling epidemics. They have the advantage of incorporating heterogeneous features, including realistic population structures (like e.g. households). Existing stochastic simulation studies of epidemics, however, have been developed mainly for incorporating single pathogen scenarios although the effect of different pathogens might directly or indirectly (e.g. via contact reductions) effect the spread of each pathogen. The goal of this work was to simulate a stochastic agent based system incorporating the effect of multiple pathogens, accounting for the household based transmission process and the dependency among pathogens.
    • Elucidation of the dual role of Mycobacterial MoeZR in molybdenum cofactor biosynthesis and cysteine biosynthesis.

      Voss, Martin; Nimtz, Manfred; Leimkühler, Silke; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. (2011)
      The pathway of molybdenum cofactor biosynthesis has been studied in detail by using proteins from Mycobacterium species, which contain several homologs associated with the first steps of Moco biosynthesis. While all Mycobacteria species contain a MoeZR, only some strains have acquired an additional homolog, MoeBR, by horizontal gene transfer. The role of MoeBR and MoeZR was studied in detail for the interaction with the two MoaD-homologs involved in Moco biosynthesis, MoaD1 and MoaD2, in addition to the CysO protein involved in cysteine biosynthesis. We show that both proteins have a role in Moco biosynthesis, while only MoeZR, but not MoeBR, has an additional role in cysteine biosynthesis. MoeZR and MoeBR were able to complement an E. coli moeB mutant strain, but only in conjunction with the Mycobacterial MoaD1 or MoaD2 proteins. Both proteins were able to sulfurate MoaD1 and MoaD2 in vivo, while only MoeZR additionally transferred the sulfur to CysO. Our in vivo studies show that Mycobacteria have acquired several homologs to maintain Moco biosynthesis. MoeZR has a dual role in Moco- and cysteine biosynthesis and is involved in the sulfuration of MoaD and CysO, whereas MoeBR only has a role in Moco biosynthesis, which is not an essential function for Mycobacteria.
    • Evaluation of glyceraldehyde-3-phosphate, prolylpeptidyl isomerase A, and a set of stably expressed genes as reference mRNAs in urate crystal inflammation

      Della Beffa, Cristina; Klawonn, Frank; Menetski, Joseph P; Schumacher, H R; Pessler, Frank (2011-10-25)
      Abstract Background The murine air pouch membrane represents an easily accessible tissue for studies on gene regulation in acute inflammation. Considering that acute inflammation may affect expression of molecular reference genes, we evaluated the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prolylpeptidyl isomerase A (PPIA) in the air pouch membrane during a complete time course of urate crystal inflammation and correlated the results with expression of interleukin (IL)-1β and hypoxia inducible factor (HIF)-1α. In addition, we aimed to identify alternate potential reference genes. Methods Using custom microfluidic real-time PCR arrays, the expression of 96 genes including GAPDH, PPIA, IL-1β, and HIF-1α was determined in dissected air pouch membranes 1, 4, 9, 18, 27, and 50 hours (h) after injecting monosodium urate (MSU) crystals into the pouch. One-way ANOVA was used to detect differential gene expression throughout the time course. Using the genes on these arrays as a convenience sample, alternate candidate reference genes were sought (1) with a biostatistical approach and (2) using the geNorm software tool. Results Pouch leukocytes peaked at t = 9h and declined toward t = 50h. PPIA expression was not differentially regulated (p = 0.52, ANOVA). In contrast, GAPDH mRNA increased steadily after crystal injection, reaching a maximal 2.8-fold increase at t = 18h (p = 0.0006, t test), which followed a marked induction of IL-1β (max., 208-fold at t = 4h, p = 8.4 × 10-5, t test) and HIF-1α (max., 6.6-fold at t = 4h, p = 0.00025, t test). Fifteen genes were artifactually identified as "significantly regulated" when Ct values were normalized against GAPDH expression. The biostatistical approach and the geNorm analysis identified overlapping sets of candidate reference genes. Both ranked PPIA as the best candidate, followed by defender against cell death 1 (DAD1) and high-mobility group B1 (HMGB1). Conclusions GAPDH mRNA expression is up-regulated in urate crystal inflammation, possibly due to inflammation-associated hypoxia. Using GAPDH mRNA for molecular normalization resulted in significant artifacts in the calculated expression of the target mRNAs. PPIA and other stably expressed genes promise to be more appropriate reference genes in this model.
    • Evaluation of glyceraldehyde-3-phosphate, prolylpeptidyl isomerase A, and a set of stably expressed genes as reference mRNAs in urate crystal inflammation.

      Della Beffa, Cristina; Klawonn, Frank; Menetski, Joseph P; Schumacher, H Ralph; Pessler, Frank; Department of Infection Genetics, Helmholtz Centre for Infection Research, Inhoffenstr, 7, 38124 Braunschweig, Germany. frank.pessler@helmholtz-hzi.de. (2011)