News

Hed of the department: Prof. Stadler

Collections in this community

Recent Submissions

  • Aethiopinolones A-E, New Pregnenolone Type Steroids from the East African Basidiomycete Fomitiporia aethiopica.

    Chepkirui, Clara; Sum, Winnie C; Cheng, Tian; Matasyoh, Josphat C; Decock, Cony; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-09)
    A mycelial culture of the Kenyan basidiomycete Fomitiporia aethiopica was fermented on rice and the cultures were extracted with methanol. Subsequent HPLC profiling and preparative chromatography of its crude extract led to the isolation of five previously undescribed pregnenolone type triterpenes 1–5, for which we propose the trivial name aethiopinolones A–E. The chemical structures of the aethiopinolones were determined by extensive 1D- and 2D-NMR, and HRMS data analysis. The compounds exhibited moderate cytotoxic effects against various human cancer cell lines, but they were found devoid of significant nematicidal and antimicrobial activities. View Full-Text
  • Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi.

    Ashrafi, Samad; Helaly, Soleiman; Schroers, Hans-Josef; Stadler, Marc; Richert-Poeggeler, Katja R; Dababat, Abdelfattah A; Maier, Wolfgang; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
    Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae), encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal and nematode-inhibiting activities of these compounds have been demonstrated suggesting that the production of these compounds may represent an adaptation to nematode parasitism.
  • Ijuhya vitellina sp. nov., a novel source for chaetoglobosin A, is a destructive parasite of the cereal cyst nematode Heterodera filipjevi.

    Ashrafi, Samad; Helaly, Soleiman; Schroers, Hans-Josef; Stadler, Marc; Richert-Poeggeler, Katja R; Dababat, Abdelfattah A; Maier, Wolfgang; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-01-01)
    Cyst nematodes are globally important pathogens in agriculture. Their sedentary lifestyle and long-term association with the roots of host plants render cyst nematodes especially good targets for attack by parasitic fungi. In this context fungi were specifically isolated from nematode eggs of the cereal cyst nematode Heterodera filipjevi. Here, Ijuhya vitellina (Ascomycota, Hypocreales, Bionectriaceae), encountered in wheat fields in Turkey, is newly described on the basis of phylogenetic analyses, morphological characters and life-style related inferences. The species destructively parasitises eggs inside cysts of H. filipjevi. The parasitism was reproduced in in vitro studies. Infected eggs were found to harbour microsclerotia produced by I. vitellina that resemble long-term survival structures also known from other ascomycetes. Microsclerotia were also formed by this species in pure cultures obtained from both, solitarily isolated infected eggs obtained from fields and artificially infected eggs. Hyphae penetrating the eggshell colonised the interior of eggs and became transformed into multicellular, chlamydospore-like structures that developed into microsclerotia. When isolated on artificial media, microsclerotia germinated to produce multiple emerging hyphae. The specific nature of morphological structures produced by I. vitellina inside nematode eggs is interpreted as a unique mode of interaction allowing long-term survival of the fungus inside nematode cysts that are known to survive periods of drought or other harsh environmental conditions. Generic classification of the new species is based on molecular phylogenetic inferences using five different gene regions. I. vitellina is the only species of the genus known to parasitise nematodes and produce microsclerotia. Metabolomic analyses revealed that within the Ijuhya species studied here, only I. vitellina produces chaetoglobosin A and its derivate 19-O-acetylchaetoglobosin A. Nematicidal and nematode-inhibiting activities of these compounds have been demonstrated suggesting that the production of these compounds may represent an adaptation to nematode parasitism.
  • An unprecedented spiro [furan-2,1’-indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp. (Hymenochaetaceae, Basidiomycota) collected in Kenya

    Chepkirui, Clara; Cheng, Tian; Matasyoh, Josphat; Decock, Cony; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
    Bioassay guided fractionation of extracts derived from submerged cultures of a Sanghuangporus sp. (i.e., the genus that was until recently referred to as the “Inonotus linteus complex” of medicinal mushrooms) originating from Kenya led to the isolation of a new spiro [furan-2,1’-indine]-3-one derivative, for which we propose the trivial name phelligridin L (1) together with the known compounds 3,14′-bihispidinyl (2), hispidin (3), ionylideneacetic acid (4), 1S-(2E)-5-[(1R)-2,2-dimethyl-6-methylidenecyclohexyl]-3-methylpent-2-enoic acid (5), phellidine E (6) and phellidine D (7). Compounds 1–3, showed moderate nematicidal activity against Caenorhabditis elegans with LD50 of 12.5 μg/m. The nematicidal activity of 3, 14′-bihispidinyl and hispidin (1, 2) has not been reported before. Furthermore, compounds 1–5 demonstrated moderate antimicrobial activity against various test organisms.
  • New secondary metabolites produced by the phytopathogenic fungus Wilsonomyces carpophilus

    Narmani, Abolfazl; Teponno, Rémy Bertrand; Arzanlou, Mahdi; Babai-Ahari, Asadollah; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
    wo new metabolites possessing the unusual 1-oxa-7-azaspiro[4.4]non-2- ene-4,6-dione core (2, 3) along with the recently described pseurotin A3 (1) were isolated from the pathogenic fungus Wilsonomyces carpophilus(previously named Stigmina carpophila). The producer organism was obtained from Prunus armeniaca collected in Iran and was identified by morphological and molecular phylogenetic methods. The structures of the isolated compounds were elucidated on the basis of extensive NMR spectroscopic analysis, high-resolution mass spectrometry and ECD analysis. The compounds were screened for their antimicrobial, cytotoxic, nematicidal and biofilm inhibition activities but, no significant effect was observed. To the best of our knowledge, this is the first report on the isolation of secondary metabolites produced by W. carpophilus.
  • Two novel species of (Parabambusicolaceae, Pleosporales) with their phoma-like asexual morphs.

    Phukhamsakda, Chayanard; Bhat, Darbhe J; Hongsanan, Sinang; Xu, Jian-Chu; Stadler, Marc; Hyde, Kevin D; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
    The monotypic genus
  • Large Scale Production and Downstream Processing of Labyrinthopeptins from the Actinobacterium .

    Rupcic, Zeljka; Hüttel, Stephan; Bernecker, Steffen; Kanaki, Sae; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-06-05)
    A method was established for the production of 1.2-fold and 4.2-fold increased amounts of the antiviral and central nervous system-active lantipeptides, labyrinthopeptins A1 and A2, respectively, isolated from the actinobacterium
  • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

    Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
    During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
  • New nematicidal and antimicrobial secondary metabolites from a new species in the new genus, .

    Rupcic, Zeljka; Chepkirui, Clara; Hernández-Restrepo, Margarita; Crous, Pedro W; Luangsa-Ard, Janet Jennifer; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-01-01)
    During the course of a study on the functional biodiversity of the mycobiota inhabiting rainforests in Thailand, a fungal strain was isolated from a plant sample and shown to represent an undescribed species, as inferred from a combination of morphological and molecular phylogenetic methods. Molecular phylogenetic analyses, based on four DNA loci, revealed a phylogenetic tree with the newly generated sequences clustering in a separate branch, together with members of the Sulcatisporaceae (Pleosporales, Ascomycota). The Thai specimen morphologically resembled
  • Volatiles from the xylarialean fungus .

    Dickschat, Jeroen S; Wang, Tao; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany.
    The volatiles emitted by agar plate cultures of the xylarialean fungus were investigated by use of a closed loop stripping apparatus in combination with GC-MS. Several aromatic compounds were found that could only be identified by comparison to all possible constitutional isomers with different ring substitution patterns. For the set of identified compounds a plausible biosynthetic scheme was suggested that gives further support for the assigned structures.
  • Novel and interesting Ophiocordyceps spp. ( Ophiocordycipitaceae , Hypocreales ) with superficial perithecia from Thailand

    Luangsa-ard, J.; Tasanathai, K.; Thanakitpipattana, D.; Khonsanit, A.; Stadler, M.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03)
  • Acetyl-CoA carboxylase 1 regulates endothelial cell migration by shifting the phospholipid composition.

    Glatzel, Daniel K; Koeberle, Andreas; Pein, Helmut; Löser, Konstantin; Stark, Anna; Keksel, Nelli; Werz, Oliver; Müller, Rolf; Bischoff, Iris; Fürst, Robert; HIPS, Helmholtz-Institute für pharmazeutische Forschung Saarland, Universitätscampus E8.1, 66123 Saarbrücken, Germany. (2018-02)
    The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.
  • Elsinopirins A-D, Decalin Polyketides from the Ascomycete Elsinoё pyri.

    Surup, Frank; Pommerehne, Kathrin; Schroers, Hans-Josef; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-05)
    In course of our screening for new secondary metabolites from ecological niche specialized, phytopathogenic fungi, the plant pathogenElsinoё pyri, strain 2203C, was found to produce four novel compounds (1-4), which were named elsinopirins A-D, in addition to the known metabolite elsinochrome A (5). After isolation by preparative high-performance liquid chromatography (HPLC), their structures, including relative stereochemistry, were elucidated by 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS) data. Finally, absolute stereochemistry was assigned by chemical shifts of Mosher's esters (α-methoxy-α-trifluoromethylphenylacetic acid; MTPA) derivatives of elsinopirin B (2). The compounds were found to be devoid of significant antibacterial, antifungal, and cytotoxic activities.
  • Six Heterocyclic Metabolites from the Myxobacterium Labilithrix luteola.

    Mulwa, Lucky S; Jansen, Rolf; Praditya, Dimas F; Mohr, Kathrin I; Wink, Joachim; Steinmann, Eike; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-28)
    Two new secondary metabolites, labindole A [2-methyl-3-(2-nitroethyl)-3H-indole] (1) and labindole B [2-methyl-3-(2-nitrovinyl)-3H-indole] (2), were isolated from the myxobacteriumLabilithrixluteola(DSM 27648T). Additionally, four metabolites3,4,5and6already known from other sources were obtained. Their structures were elucidated from high resolution electrospray ionisation mass spectrometry (HRESIMS) and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy data and their relative configuration was assigned based on nuclear Overhauser effect (NOE) and vicinal ¹H-NMR coupling data. The compounds where tested for biological activities; labindoles A (1) and B (2) exhibited significant activity against Hepatitis C Virus, 9H-carbazole (3), 3-chloro-9H-carbazole (4) and 4-hydroxymethyl-quinoline (5) showed antifungal activities. Moreover, compound3had weak to moderate antibacterial activities, while labindoles A (1) and B (2) were devoid of significant antifungal and antibacterial effects.
  • Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum.

    Rupcic, Zeljka; Rascher, Monique; Kanaki, Sae; Köster, Reinhard W; Stadler, Marc; Wittstein, Kathrin; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-03-06)
    Basidiomycetes of the genusHericiumare among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion's Mane mushroom (Hericium erinaceus) strain and a strain of the rare species,Hericium flagellum(synonymH. alpestre). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act onBDNF, which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well onNGFexpression, which is consistent with the literature.
  • Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications

    Dayarathne, MC; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
  • Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes)

    Samarakoon, MC et al.; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2016)
  • Aethiopinolones A-E, New Pregnenolone Type Steroids from the East African Basidiomycete Fomitiporia aethiopica.

    Chepkirui, Clara; Sum, Winnie C; Cheng, Tian; Matasyoh, Josphat C; Decock, Cony; Stadler, Marc; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2018-02-09)
    A mycelial culture of the Kenyan basidiomyceteFomitiporia aethiopicawas fermented on rice and the cultures were extracted with methanol. Subsequent HPLC profiling and preparative chromatography of its crude extract led to the isolation of five previously undescribed pregnenolone type triterpenes1-5, for which we propose the trivial name aethiopinolones A-E. The chemical structures of the aethiopinolones were determined by extensive 1D- and 2D-NMR, and HRMS data analysis. The compounds exhibited moderate cytotoxic effects against various human cancer cell lines, but they were found devoid of significant nematicidal and antimicrobial activities.
  • Yeast diversity and species recovery rates from beech forest soils

    Yurkov, Andrey M.; Wehde, Thorsten; Federici, Julian; Schäfer, Angela M.; Ebinghaus, Malte; Lotze-Engelhard, Sascha; Mittelbach, Moritz; Prior, René; Richter, Christian; Röhl, Oliver; Begerow, Dominik; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr.7, 38124 Braunschweig, Germany. (2016-07-14)
  • Bioactive Compounds Produced by Hypoxylon fragiforme against Staphylococcus aureus Biofilms.

    Yuyama, Kamila Tomoko; Chepkirui, Clara; Wendt, Lucile; Fortkamp, Diana; Stadler, Marc; Abraham, Wolf-Rainer; Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstr. 7, 38124 Braunschweig, Germany. (2017-12-12)
    Treating infections organized in biofilms is a challenge due to the resistance of the pathogens against antibiotics and host immune cells. Many fungi grow in a wet environment, favorable for the growth of bacterial biofilms, and we speculated that fungi possess some strategies to control these bacterial biofilms. A fungus identified as Hypoxylon fragiforme, was collected in the Harz Mountains, Germany, and its mycelial culture was fermented in different culture media for 67 days to test its biological potential against bacterial biofilms. Sclerin, sclerin diacid and its 3-methyl monoester (methyl 1-(5-hydroxy-6-carboxylic-2,3,4-trimethylphenyl) propionate) are here described for the first time from this fungus. Sclerin and its diacid interfered with the biofilm formation of the pathogen Staphylococcus aureus, inhibiting 86% and 80% of the biofilm at 256 μg mL-1, respectively, but not killing the bacterium. Interestingly, the monomethylester of sclerin diacid was inactive. Although these compounds did not possess any activity against a pre-formed biofilm, they prevented its formation at subtoxic concentrations. Furthermore, sclerin and its diacid displayed a high specificity against Staphylococcus aureus, indicating a good strategy against pathogenic biofilms when combined with antibiotics.

View more